cho a,b,c >0 và a+b+c+1. Tìm Max của M=ab/(c+1)+bc/(a+1)+bc/(b+1)
Cho a, b, c > 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) . Tìm MAX của :
A= \(\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ac+a^2}}\)
\(\dfrac{1}{\sqrt{a^2-ab+b^2}}< =\dfrac{1}{\sqrt{2ab-ab}}=\dfrac{1}{\sqrt{ab}}\)
\(\sqrt{\dfrac{1}{b^2-bc+c^2}}< =\dfrac{1}{\sqrt{bc}};\sqrt{\dfrac{1}{c^2-ac+c^2}}< =\dfrac{1}{\sqrt{ac}}\)
=>P<=1/a+1/b+1/c=3
Dấu = xảy ra khi a=b=c=1
Cho a, b, c > 0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\) .
Tìm MAX : A= \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\)
Cho a;b;c>0a;b;c>0 thỏa mãn : (a+b)(b+c)(c+a)=1
Tìm max của biểu thức M=ab+bc+ca
Cho a,b,c,d,e >=0 và a+b+c+d+e=1. Tìm max T=ab+bc+cd+de
Cho \(\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ac=1\end{matrix}\right.\) Tìm max của \(P=\dfrac{1-a^2}{1+a^2}+\dfrac{1-b^2}{1+b^2}+\dfrac{1-c^2}{1+c^2}\)
Cái c là \(\dfrac{2}{\sqrt{1+c^2}}\) ạ
\(P=\dfrac{2-\left(1+a^2\right)}{1+a^2}+\dfrac{2-\left(1+b^2\right)}{1+b^2}+\dfrac{2}{\sqrt{1+c^2}}\)
\(P=2\left(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}\right)-2\)
Từ điều kiện \(ab+bc+ca=1\), đặt \(\left\{{}\begin{matrix}a=tanx\\b=tany\\c=tanz\end{matrix}\right.\) với \(x+y+z=\dfrac{\pi}{2}\)
Xét \(Q=\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}+\dfrac{1}{\sqrt{1+c^2}}=\dfrac{1}{1+tan^2x}+\dfrac{1}{1+tan^2y}+\dfrac{1}{\sqrt{1+tan^2z}}\)
\(Q=cos^2x+cos^2y+cosz=1+\dfrac{1}{2}\left(cos2x+cos2y\right)+cosz\)
\(=1+cos\left(x+y\right)cos\left(x-y\right)+cosz\le1+cos\left(x+y\right)+cosz\)
\(=1+cos\left(\dfrac{\pi}{2}-z\right)+cosz=1+sinz+cosz=1+\sqrt{2}sin\left(z+\dfrac{\pi}{4}\right)\le1+\sqrt{2}\)
\(\Rightarrow P\le2\left(1+\sqrt{2}\right)-2=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\dfrac{\pi}{8}\\z=\dfrac{\pi}{4}\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(\sqrt{2}-1;\sqrt{2}-1;1\right)\)
Cho a+b+c=1 (a,b,c>0). Tìm Max P= \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Ta có \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{a+b}\right)\)
Khi đó \(P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\)
\(MaxP=\frac{3}{2}\)khi a=b=c=1/3
Cho a,b,c dương t/m abc=1. Tìm max
\(T=\dfrac{ab}{a^2+ab+b^2}+\dfrac{bc}{b^2+bc+c^2}+\dfrac{ca}{c^2+ca+a^2}\)
Đề bài có nhầm lẫn gì ko nhỉ?
\(T=\dfrac{ab}{a^2+b^2+ab}+\dfrac{bc}{b^2+c^2+2bc}+\dfrac{ca}{c^2+a^2+ca}\le\dfrac{ab}{2ab+ab}+\dfrac{bc}{2bc+bc}+\dfrac{ca}{2ca+ca}=1\)
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
cho a>0, b>0, c>0, a+b+c=1
tìm max của S=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)