Giả sử p là số nguyên tố lẻ
Đặt \(m=\frac{9^p-1}{8}\)
Cmr:m là 1 hợp số lẻ không chia hết cho 3 và \(3^{m-1}\)chia m dư 1
Giả sử p là số nguyên tố lẻ
Đặt \(m=\frac{9^p-1}{8}\)
Cmr:m là hợp số lẻ không chia hết cho 3 và \(3^{m-1}\)chia cho m dư 1
Giúp mk với nha ^^
Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\) Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho \(m\) nên \(m\) không chia hết cho \(3.\)
Cuối cùng, \(m-1=\frac{9^p-9}{8}\). Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)
chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho \(2p.\) Suy ra \(3^{m-1}-1\) chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)
Giả sử p là số nguyên tố lẻ và m = 9p - 1/8.CMR: m là hợp số lẻ không chia hết cho 3 và 3^m - 1 chia cho m dư 1.
Mình mong được các cao nhân tận tình giúp đỡ ạ!
Mình cảm ơn ạ.
bn vào olm.vn ik trong đấy có câu trả lời đấy!
gợi ý cho bn r đó nha !
nhớ like cho mik đấy!
Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)
Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số
Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)
Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)
Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)
Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)
cho p nguyên tố lẻ đặt m=(9^p-1)/8 CMR m là hợp số lẻ không chia hết cho 3 và 3^m-1≡1(mod m)
ai làm đc mik đug cko
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
1) Cho n là một số không chia hết cho 3 c/m : n^2 chia cho 3 dư 1
2) Cho p là 1 số nguyên tố > 3 . Hỏi p^2 + 2003 là số nguyên tố hay hợp số ?
2, p là số nguyên tố lớn hơn 3 nên p lẻ
=> p^2 lẻ
=? p^2+2003 chẵn => nó có nhiều hơn 2 ước (1;2; chinhsnos...)
=> p^2+2003 là hợp số
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
1, Số tận cùng là 4 thì chia hết cho 2
2, Số chia hết cho 2 thì có chữ số tận cùng là 4
3, Số chia hết cho 5 thì có chữ số tận cùng là 5
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7
5, Số chia hết cho 9 có thể chia hết cho 3
6, Số chia hết cho 3 có thể chia hết cho 9
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó
10, Hợp số là số tự nhiên nhiều hơn 2 ước
11, Một số nguyên tố đều là số lẻ
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố
16, Hai số nguyên tố là hai số nguyên tố cùng nhau
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau
1, Số tận cùng là 4 thì chia hết cho 2 Đ
2, Số chia hết cho 2 thì có chữ số tận cùng là 4 Đ
3, Số chia hết cho 5 thì có chữ số tận cùng là 5 Đ
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7 S
5, Số chia hết cho 9 có thể chia hết cho 3 Đ
6, Số chia hết cho 3 có thể chia hết cho 9 S
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9 S
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r Đ
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó S
10, Hợp số là số tự nhiên nhiều hơn 2 ước Đ
11, Một số nguyên tố đều là số lẻ S
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5 S
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8 Đ
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số Đ
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố Đ
16, Hai số nguyên tố là hai số nguyên tố cùng nhau S
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau S
ht
Giả sử m và n là các số nguyên sao cho:\(\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1334}+\frac{1}{1335}\).Chứng minh rằng m chia hết cho 2003
1.chứng minh rằng (p-1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố
2. cho 2^m-1 là số nguyên tố. chứng minh m cũng là số nguyên tố