rút gọn
\(A=\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
Rút gọn A= \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(A=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{6-2\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{5+2\sqrt{5}+1}}+\frac{6-2\sqrt{5}}{2+\sqrt{5-2\sqrt{5}+1}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6-2\sqrt{5}}{2+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\frac{6+2\sqrt{5}}{2+\left|\sqrt{5}+1\right|}+\frac{6-2\sqrt{5}}{2-\left|\sqrt{5}-1\right|}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{5}+1}+\frac{6-2\sqrt{5}}{2-\sqrt{5}+1}\)( vì \(\sqrt{5}+1>0;\sqrt{5}-1>0\))
\(=\frac{6+2\sqrt{5}}{3+\sqrt{5}}+\frac{6-2\sqrt{5}}{3-\sqrt{5}}\)
\(=2+2\)
\(=4\)
Vậy A = 4
Tích cho mk nhoa !!!! ~~
Rút gọn:
\(A=\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
bạn quy đồng nha,,nhóm cái căn3 + căn 5 thành 1 nhóm,,,rồi quy đồng \(\sqrt{2}-\left(\sqrt{3}+\sqrt{5}\right)\)
Rút gọn A = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(\frac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\frac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)Rút gọn
=\(\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\frac{5-\sqrt{15}-2\sqrt{15}+6-10-2\sqrt{15}-\sqrt{15}-3}{5-3}\)
\(=\frac{-2-6\sqrt{15}}{2}=\frac{-2\left(1+3\sqrt{15}\right)}{3}=-1-3\sqrt{15}\)
Rút gọn: A = \(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9-4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Bạn tham khảo lời giải tại đây:
\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
rút gọn biểu thức trên
\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)
\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)
Rút gọn
\(A=\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
\(B=\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(C=\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(A=\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
\(=\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\sqrt{3}}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\sqrt{3}}{3-1}\)
\(=\frac{2\sqrt{3}}{2}\)
\(=\sqrt{3}\)
\(B=\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)}+\frac{\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{5+2\sqrt{5}+1+5-2\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\frac{12}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\frac{12}{5-1}\)
\(=\frac{12}{4}\)
\(=3\)
Rút gọn biểu thức
\(A=\sqrt{\frac{5+3\sqrt{3}}{1+\sqrt{3}}}-\sqrt{\frac{5-3\sqrt{3}}{1-\sqrt{3}}}\)