CMR nếu n là số tự nhiên lẻ thì
A=n3 +3n2-n-3 chia hết cho 8
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
CMR: Tổng của n số tự nhiên liên tiếp chia hết cho n ( nếu n là số lẻ ), không chia hết cho n ( nếu n là số chẵn )
cmr: Với n là số tự nhiên lẻ thì A=n3+3n2-n-3 chia hết cho 8.
A = n^2 ( n+ 3 ) - ( n+ 3 )
= ( n^2 - 1 )(n+ 3 )
= ( n+ 1 )(n- 1 )(n + 3)
Vì n lẻ => n = 2k+ 1 thay vào ta có :
A = ( 2k + 1 + 1 )(2k+1 - 1 )(2k + 1 + 3) = (2k+2).2k (2k+4) = 2(k+1).2k . 2(k+2) = 8k(k+1)(k+2)
Luôn luôn chia hết cho 8 mới mọi n lẻ
=> A chia hết cho 8
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
chứng minh với mọi số tự nhiên n, nếu n là số lẻ thì n^2 -1 chia hết cho 8
Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :
\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)
4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).
Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.
bài 1:CMR
a) n(n+8)(n+13) chia hết cho 3 với n là số tự nhiên
b)Nếu 10a+b chia hết cho 13 thì a+4b chia hết cho 13.Với a;b là số tự nhiên