Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thiên Anh
20 tháng 4 2017 lúc 22:49

a) (x+2)(x−2)−(x−3)(x+1)

=x2−22−(x2+x−3x−3)

=x2−4−x2−x+3x+3

=2x−12x−1

b) (2x+1)2+(3x−1)2+2(2x+1)(3x−1)(

=(2x+1)2+2.(2x+1)(3x−1)+(3x−1)2

=[(2x+1)+(3x−1)]2

= (2x+1+3x−1)2

=(5x)2=25x2



ttt
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 8 2020 lúc 15:22

a)

\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)

\(=-27\)

or

\(A=x^3+27-54-x^3=-27\)

b)

\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

c)

\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

d)

\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=6x^2-3x-10\)

Khách vãng lai đã xóa
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 20:59

a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b: \(=3x^2-6x-5x+5x^2-8x^2+24\)

=-11x+24

Cỏ dại
Xem chi tiết
Đỗ Ngọc Hải
12 tháng 6 2018 lúc 9:53

\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

Anh PVP
Xem chi tiết
Akai Haruma
8 tháng 7 2023 lúc 21:48

Lời giải:

a. Biểu thức này không có khả năng rút gọn. Khai triển ra cũng được nhưng không làm gọn được bạn nhé. 

b. $=(2x)^2-3^2-4x^2=4x^2-9-4x^2=-9$

c. $=(3x)^2+2.3x+1^2-(x^2-1)=9x^2+6x+1-x^2+1=8x^2+6x+2$

Đồng Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 22:42

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)

^($_DUY_$)^
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 21:26

a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)

\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)

\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)

\(=x^3-16x^2+25x\)