Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Trần
Xem chi tiết
Anh Do
Xem chi tiết
Vongola Decimo
Xem chi tiết
Chỉ Yêu Mình Em
20 tháng 11 2018 lúc 16:16

bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/

nguyen lan anh
Xem chi tiết
Akai Haruma
31 tháng 3 2018 lúc 14:02

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

duc
Xem chi tiết
BÙI BẢO KHÁNH
Xem chi tiết
Kiều Vũ Linh
9 tháng 1 lúc 17:14

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}

Phan Thanh Binh
Xem chi tiết
Rider kylin
Xem chi tiết
Phạm Thế Mạnh
7 tháng 1 2016 lúc 21:13

\(\left(x^2+\frac{x}{2}\right)^2+\left(\frac{x}{2}+1\right)^2+\frac{x^2}{2}=0\)
Cả 2 cái trên kia đều lớn hơn hoặc bằng 0 nhưng dấu "=" không xảy ra đồng thời nên VT>0 -> vô nghiệm

Lê Thị Thúy Hường
7 tháng 1 2016 lúc 21:20

(x-1)(x4+x3+x2+x+1)=0
x5-1=0
x5=1
x=1 <=> x-1=0
<=> Phương trình vô nghiệm
 

nguyen nguyet anh
Xem chi tiết
Darlingg🥝
11 tháng 2 2020 lúc 13:34

Ta có \(\Leftrightarrow x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow x^4+x^2+x^3+x+x^2+1=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\left(ktm\right)\\x^2+1=0\left(ktm\right)\end{cases}}\)

=> Pt vô nghiệm

đpcm.

Khách vãng lai đã xóa
Phan Gia Huy
11 tháng 2 2020 lúc 17:10

\(x^4+x^3+x^2+x+1=0\)

\(\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Rightarrow x^5-1=0\)

\(\Rightarrow x^5=1\)

\(\Rightarrow x=1\)

Nhưng thay vào PT ko đúng nên PT vô nghiệm

Khách vãng lai đã xóa