Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ice Wings
Xem chi tiết
kaitovskudo
13 tháng 3 2016 lúc 13:26

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)

CHU ANH TUẤN
Xem chi tiết
Ongniel
18 tháng 3 2018 lúc 14:11

Đồng dư thức là cái gì

Coin Hunter
Xem chi tiết

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

Mai Trung Hải Phong
8 tháng 1 lúc 19:13

Ta có:

\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv0\left(mod19\right)\)

Vậy ....

Nguyen Cong Anh Nguyen
Xem chi tiết
Đinh Đức Hùng
19 tháng 7 2017 lúc 16:11

Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)

Áp dụng ta đc :

a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)

b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)

Huyền Anh
Xem chi tiết
Lê Thị Cẩm Tú
12 tháng 12 2016 lúc 11:37

n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra có ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6
=> A chia hết cho 6

Nguyễn Hưng Phát
Xem chi tiết
Phan Văn Nam
6 tháng 1 2016 lúc 9:58

............?

 

kaitovskudo
6 tháng 1 2016 lúc 9:59

11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n

=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12

Tacó: 133 . 11n chia hết 133;  144n – 11n chia hết (144 – 11)

 144n – 11n chia hết 133  11n + 1 + 122n + 1

Phan Văn Nam
6 tháng 1 2016 lúc 10:00

cc lam duoc

 

Ice Wings
Xem chi tiết
kaitovskudo
13 tháng 3 2016 lúc 13:09

Ta có: 3= 1 (mod 5)

=>34n = 1n (mod 5)

=>34n.3 = 1.3 (mod 5)

=>34n+1 = 3 (mod 5)

=>34n+1+2 = 3+2 (mod 5)

=>P = 0 (mod 5)

Vậy P chia hết cho 5(đpcm)

 "=" là đồng dư nha

Nguyễn Mạnh Tuấn
13 tháng 3 2016 lúc 12:52

ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5

vậy p chia hết cho 5(đpcm)

Nguyễn Hưng Phát
13 tháng 3 2016 lúc 12:56

P=34n+1+2

=34n.3+2

=(34)n.3+2

=81n.3+2

=......1.3+2

=.......3+2

=........5 chia hết cho 5 (đpcm)

Nguyễn Bảo Trúc
Xem chi tiết
trần thùy dương
Xem chi tiết
Nhok Kami Lập Dị
24 tháng 1 2018 lúc 20:15

bài này vượt quá giới hạn của ta rồi

Nguyên Trinh Quang
24 tháng 1 2018 lúc 20:17

Câu 1 cách làm:

Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính

2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)