(1/2x^2+0,1).(-1-x^2)=0
1, x+2/3-0,5=0,1+2x
2, 2.(x+1)-x=3
3, x^2 + l 2x+1 l =0
3, TH1 : 2x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{2}\)
| 2x + 1 | = 2x + 1 (*)
thay (*) vào biểu thức ta có :
x2 + 2x + 1 = 0
<=> ( x + 1 )2 = 0
<=> x + 1 = 0
<=> x = -1
Tìm x
l 2x - 1 l = 2x - 1
2 l x + 0,1 l + 0,2 = 0
l 0, 5 - x l = l - 0,5 l
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
Giải phương trình sau :
a) 11 + 8x – 3 = 5x – 3 + x
b) 2x(x + 2)² - 8x² = 2(x – 2)(x² + 2x + 4)
c) (x + 1)(2x – 3) = (2x – 1)(x + 5)
d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
a: Ta có: \(8x+11-3=5x+x-3\)
\(\Leftrightarrow8x+8=6x-3\)
\(\Leftrightarrow2x=-11\)
hay \(x=-\dfrac{11}{2}\)
b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)
\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)
\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)
\(\Leftrightarrow-10x+2=0\)
\(\Leftrightarrow-10x=-2\)
hay \(x=\dfrac{1}{5}\)
d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)
\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)
\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)
hay t=2
1/ Tìm Giá trị lớn nhất của:
A=0,(21) - |x - 0,(4)|
B= 1,1(2) - |x + 1,(2)|
2/ Tìm (x,y) thỏa:
|2x - 0,(24)| + |3y + 0,1(55) = 0
Giúp mk nhé m.n
mk cảm ơn m.n nhìu ạ
><
Bài 1:
a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)
Dấu '=' xảy ra khi x=4/9
b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)
Dấu '=' xảy ra khi x=-11/9
Bài 2:
=>2x-8/33=0 và 3y+7/45=0
=>2x=8/33 và 3y=-7/45
=>x=8/66=4/33 và y=-7/135
Tìm m sao cho
a, 2x^2- 2(m+1)x + m+ 1 \(\ge\)0 với x\(\in\)[0,1]
b, 3x^2-( m-1)x +2\(\le\)0 với x\(\in\)[1,2]
a. a,b,c>0, a+b=<1, tìm min P=1/(a^3+b^3)+1/(a^2.b+a.b^2)
b. a,b,c>0,a^2+b^2+c^2=1, tìm minP=a+b+c+1/abc
c. x,y,z>0,1/x+1/y+1/z=4, tìm min P=1/(2x+y+z)+1/(2y+x+z)+1/(2z+x+y)
Câu 3. Giải các phương trình sau bằng cách đưa về dạng ax+b= 0
1. a, 3x-2=2x-3; b, 3-4y+24+6y=y+27+3y
c, 7-2x=22-3x; d, 8x-3=5x+12
e, x-12+4x=25+2x-1; f, x+2x+3x-19=3x+5
g, 11+8x-3=5x-3+x; h, 4-2x+15=9x+4-2
2. a, 5-(x-6)=4(3-2); b, 2x (x+2)2-8x2=2(x-2) (x2+2x-4)
c, 7-(2x+4)=-(x+4); d, (x-2)3+(3x-1) (3x+1)=(x+1)3
e, (x+1) (2x-3)=(2x-1) (x+5); f, (x-1)3-x(x+1)2=5x (2-x)-11 (x+2)
g, (x-1)-(2x-1)=9-x; h, (x-3) (x+4)-2(3x-2)=(x-4)2
i, x(x+3)2-3x=(x+2)3+1; j, (x+1) (x2-x+1)-2x=x(x+1) (x-1)
3. a, 1,2-(x-0,8)=-2(0,9+x); b, 3,6-0,5 (2x+1)=x-0,25 (2-4x)
c, 2,3x-2 (0,7+2x)= 3,6-1,7x; d, 0,1-2 (0,5t-0,1)=2 (t-2,5)-0,7
e, 3+2,25x+2,6= 2x+5+0,4x; f, 5x+3,48-2,35x= 5,38-2,9x+10,42
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
2)
a) \(5-\left(x-6\right)=4\cdot\left(3-2\right)\)
\(\Leftrightarrow5-x+6=12-8\)
\(\Leftrightarrow11-x=4\)
\(\Rightarrow x=7\)
b) \(2x\cdot\left(x+2\right)^2-8x^2=2\cdot\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\cdot\left(x^2+4x+4\right)-8x^2=2\cdot\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
\(\Leftrightarrow8x+16=0\)
\(\Rightarrow x=-2\)
c) \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+x=-4-3\)
\(\Leftrightarrow-x=-7\)
\(\Rightarrow x=7\)
d) \(\left(x-2\right)^3+\left(3x-1\right)\cdot\left(3x+1\right)=\left(x+1\right)^3\)
\(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
\(\Leftrightarrow9x-10=0\)
\(\Rightarrow x=\frac{10}{9}\)
e)\(\left(x+1\right)\cdot\left(2x-3\right)=\left(2x-1\right)\cdot\left(x+5\right)\)
\(\Leftrightarrow2x^3-3x+2x-3-2x^2-10x+x+5=0\)
\(\Leftrightarrow2-10x=0\)
\(\Rightarrow x=\frac{2}{10}=\frac{1}{5}\)
f)\(\left(x-1\right)^3-x\cdot\left(x+1\right)^2=5x\cdot\left(2-x\right)-11\cdot\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x-10x+5x^2+11x+22=0\)
\(\Leftrightarrow3x+21=0\)
\(\Rightarrow x=-7\)
g)\(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Leftrightarrow x-1-2x+1-9+x=0\)
\(\Leftrightarrow-9=0\)
\(\Rightarrow\) Phương trình vô nghiệm
h)\(\left(x-3\right)\cdot\left(x+4\right)-2\cdot\left(3x-2\right)=\left(x-4\right)^2\)
\(\Leftrightarrow x^2+4x-3x-12-6x+4=x^2-8x+16\)
\(\Leftrightarrow x^2-5x-8=x^2-8x+16\)
\(\Leftrightarrow x^2-5x-8-x^2+8x-16=0\)
\(\Leftrightarrow3x-24=0\)
\(\Rightarrow x=8\)
i)\(x\cdot\left(x+3\right)^2-3x=\left(x+2\right)^3+1\)
\(\Leftrightarrow x^3+6x^2+9x-3x=x^3+6x^2+12x+8+1\)
\(\Leftrightarrow x^3+6x^2+6x=x^3+6x^2+12x+9\)
\(\Leftrightarrow x^3+6x^2+6x-x^3-6x^2-12x-9=0\)
\(\Leftrightarrow-6x-9=0\)
\(\Rightarrow x=-\frac{3}{2}\)
j)\(\left(x+1\right)\cdot\left(x^2-x+1\right)-2x=x\cdot\left(x+1\right)\cdot\left(x-1\right)\)
\(\Leftrightarrow\left(x^3+1\right)-2x=x\left(x^2-1\right)\)
\(\Leftrightarrow x^3+1-2x-x^3+x=0\)
\(\Leftrightarrow1-x=0\)
\(\Rightarrow x=1\)
Giải các phương trình sau bằng cách đưa về dạng ax+b=0
a) 1,2-(x-0,8)= -2(0,9+x)
b) 3,6-0,5(2x+1)= x-0,25(2-4x)
c) 2,3x-2(0,7+2x)= 3,6-1,7x
d) 0,1-2(0,5t-0,1)= 2(t-2,5)-0,7
e) 3+2,25x+2,6= 2x+5+0,4x
f) 5x+3,48-2,35x= 5,38-2,9x+10,42
Mọi người giúp mình với! Mình đang cần gấp T_T
a) \(1,2-\left(x-0,8\right)=-2\left(0,9+x\right)\)
\(\Leftrightarrow1,2-x+0,8=-1,8-2x\)
\(\Leftrightarrow x+2+1,8=0\)
\(\Leftrightarrow x+3,8=0\)
\(\Leftrightarrow x=-3,8\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3,8\right\}\)
b) \(3,6-0,5\left(2x+1\right)=x-0,25\left(2-4x\right)\)
\(\Leftrightarrow3,6-x-0,5=x-0,5+x\)
\(\Leftrightarrow3,1+0,5-x-2x=0\)
\(\Leftrightarrow3,6-3x=0\)
\(\Leftrightarrow x=1,2\)
Vậy tập nghiệm của phương trình là \(S=\left\{1,2\right\}\)
c) \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)
\(\Leftrightarrow2,3x-1,4-4x=3,6-1,7x\)
\(\Leftrightarrow-1,7x+1,7x-1,4-3,6=0\)
\(\Leftrightarrow-5=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
d) \(0,1-2\left(0,5t-0,1\right)=2\left(t-2,5\right)-0,7\)
\(\Leftrightarrow0,1-t+0,2=2t-5-0,7\)
\(\Leftrightarrow0,3-t=2t-5,7\)
\(\Leftrightarrow0,3+5,7-t-2t=0\)
\(\Leftrightarrow-3t+6=0\)
\(\Leftrightarrow t=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
e) \(3+2,25x+2,6=2x+5+0,4x\)
\(\Leftrightarrow5,6+2,25x=2,4x+5\)
\(\Leftrightarrow2,25x-2,4x+5,6-5=0\)
\(\Leftrightarrow-0,15x+0,6=0\)
\(\Leftrightarrow x=4\)
Vậy tập nghiệm của phương trình là \(S=\left\{4\right\}\)
f) \(5x+3,48-2,35x=5,38-2,9x+10,42\)
\(\Leftrightarrow2,65x+3,48=15,8-2,9x\)
\(\Leftrightarrow2,65x+2,9x+3,48-15,8=0\)
\(\Leftrightarrow5,55x-12,32=0\)
\(\Leftrightarrow x=\frac{1232}{555}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1232}{555}\right\}\)