Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Hữu Duyy
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 1 2022 lúc 7:52

\(M=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1.\)

Ta có: \(\left(x-2\right)^2\ge0\) \(\forall x\in R.\)

           \(1>0.\)

\(\Rightarrow\left(x-2\right)^2+1\ge1.\Rightarrow M\ge1.\)

Dấu \("="\) xảy ra. \(\Leftrightarrow\left(x-2\right)^2+1=1.\Leftrightarrow\left(x-2\right)^2=0.\Leftrightarrow x=2.\)

Vậy GTNN của M = 1 khi x = 2.

Đỗ Tuệ Lâm
11 tháng 1 2022 lúc 7:57

\(M=x^2-4x+4+1\)=\(\left(x-2\right)^2+1\)

vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2+1\ge1\)

=>\(M\ge1\) dấu''='' xảy ra  khi M = 1<=>x-2=0<=>x=2

kl:\(M_{min}=1\) khi và chỉ khi x =2

 

Duong
Xem chi tiết
Sky Gaming
24 tháng 9 2023 lúc 10:22

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

Duong
23 tháng 9 2023 lúc 23:38

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

Kwalla
Xem chi tiết
HT.Phong (9A5)
19 tháng 8 2023 lúc 13:17

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

HT.Phong (9A5)
19 tháng 8 2023 lúc 13:29

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

Turquoise ♫
19 tháng 8 2023 lúc 13:21

\(M=2x^2+4x+7\)

\(=2\left(x^2+2x+\dfrac{7}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]\)

\(=2\left(x+1\right)^2+5\)

Vì \(2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+1\right)^2+5\ge5\forall x\)

\(\Rightarrow M_{min}=5\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Tương tự: \(N=x^2-x+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

\(\Rightarrow N_{min}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

\(E=-4x^2+x-1\)

\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)

\(=-4\left[x^2-2.x.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2-\left(\dfrac{1}{8}\right)^2+\dfrac{1}{4}\right]\)

\(=-4\left[\left(x-\dfrac{1}{8}\right)^2+\dfrac{15}{64}\right]\)

\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\)

Vì \(-4\left(x-\dfrac{1}{8}\right)^2\le0\forall x\)

\(\Rightarrow-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\le-\dfrac{15}{16}\forall x\)

\(\Rightarrow E_{max}=-\dfrac{15}{16}\Leftrightarrow-4\left(x-\dfrac{1}{8}\right)^2=0\Leftrightarrow x=\dfrac{1}{8}\)

Tương tự: \(F=5x-3x^2+6\)

\(=-3x^2+5x+6\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)

\(\Rightarrow F_{max}=\dfrac{97}{12}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{5}{6}\)

Phạm Đỗ Bảo Ngọc
Xem chi tiết
Xyz OLM
13 tháng 7 2021 lúc 15:55

Ta có C = x2 - 4x + y2 - y + 5 

\(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)

\(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

=> Min C = 3/4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy Min C = 3/4 <=> x = 2 ; y = 1/2 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 7 2021 lúc 16:07

C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4

= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y 

Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4

Khách vãng lai đã xóa
_png.vna_
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 21:27

\(P=\left(x-2\right)^2+\left|y-x\right|+3\)

\(\left(x-2\right)^2>=0\forall x\)

\(\left|y-x\right|>=0\forall x,y\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

=>x=y=2

Nguyễn Hảo Hảo
27 tháng 10 lúc 8:53

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

Moon ngáo
Xem chi tiết
Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

nguyễn văn khoa
Xem chi tiết
Fudo
23 tháng 3 2020 lúc 13:37

                                                      Bài giải

\(M=\left(3x-\frac{1}{2}\right)^2-4\)

Do \(\left(3x-\frac{1}{2}\right)^2\ge0\text{ với mọi }x\text{ }\Rightarrow\text{ }\left(3x-\frac{1}{2}\right)^2-4\ge-4\)

Dấu " = " xảy ra khi \(3x-\frac{1}{2}=0\text{ }\Rightarrow\text{ }3x=\frac{1}{2}\text{ }\Rightarrow\text{ }x=\frac{1}{6}\)

Vậy GTNN của \(M=-4\text{ khi }x=\frac{1}{6}\)

Khách vãng lai đã xóa
Nguyễn Hà Phương
Xem chi tiết
Lê Tài Bảo Châu
23 tháng 1 2020 lúc 21:39

a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)

TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)

Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Khách vãng lai đã xóa