tìm giá trị nhỏ nhất của biểu thức
m=/x-5/+/y+2/-37
N=(x-13)mũ 2 +2015
giup mik nhk
Tìm giá trị nhỏ nhất của biểu thức
M =\(x^2-4x+5\)
\(M=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1.\)
Ta có: \(\left(x-2\right)^2\ge0\) \(\forall x\in R.\)
\(1>0.\)
\(\Rightarrow\left(x-2\right)^2+1\ge1.\Rightarrow M\ge1.\)
Dấu \("="\) xảy ra. \(\Leftrightarrow\left(x-2\right)^2+1=1.\Leftrightarrow\left(x-2\right)^2=0.\Leftrightarrow x=2.\)
Vậy GTNN của M = 1 khi x = 2.
\(M=x^2-4x+4+1\)=\(\left(x-2\right)^2+1\)
vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2+1\ge1\)
=>\(M\ge1\) dấu''='' xảy ra khi M = 1<=>x-2=0<=>x=2
kl:\(M_{min}=1\) khi và chỉ khi x =2
a) tìm giá trị nhỏ nhất của biểu thức : A= (x-2) mũ 2 + 24
b) tìm giá trị lớn nhất của biểu thức :B= -x mũ 2 + 13/5
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
Ai trả lời nhanh và đúng mik give tick xanh nhé.
Tìm giá trị nhỏ nhất của biểu thức
M=2x2+4x+7
N=x2-x+1
Tìm giá trị lớn nhất của biểu thức
E=-4x2+x-1
F=5x-3x2+6
Tìm giá trị nhỏ nhất của biểu thức:
a) Ta có:
\(M=2x^2+4x+7\)
\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)
\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)
\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)
\(M=2\left(x+1\right)^2+5\)
Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:
\(M=2\left(x+1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra:
\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: \(M_{min}=5\) khi \(x=-1\)
b) Ta có:
\(N=x^2-x+1\)
\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=" xảy ra:
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
Tìm giá trị lớn nhất của biểu thức
a) Ta có:
\(E=-4x^2+x-1\)
\(E=-\left(4x^2-x+1\right)\)
\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)
\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)
Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên
\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)
Dấu "=" xảy ra:
\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)
\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)
Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)
b) Ta có:
\(F=5x-3x^2+6\)
\(F=-3x^2+5x-6\)
\(F=-\left(3x^2-5x-6\right)\)
\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)
\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)
Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:
\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)
Dấu "=" xảy ra:
\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)
Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)
\(M=2x^2+4x+7\)
\(=2\left(x^2+2x+\dfrac{7}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{5}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]\)
\(=2\left(x+1\right)^2+5\)
Vì \(2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+1\right)^2+5\ge5\forall x\)
\(\Rightarrow M_{min}=5\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Tương tự: \(N=x^2-x+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow N_{min}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
\(E=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left[x^2-2.x.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2-\left(\dfrac{1}{8}\right)^2+\dfrac{1}{4}\right]\)
\(=-4\left[\left(x-\dfrac{1}{8}\right)^2+\dfrac{15}{64}\right]\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\)
Vì \(-4\left(x-\dfrac{1}{8}\right)^2\le0\forall x\)
\(\Rightarrow-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\le-\dfrac{15}{16}\forall x\)
\(\Rightarrow E_{max}=-\dfrac{15}{16}\Leftrightarrow-4\left(x-\dfrac{1}{8}\right)^2=0\Leftrightarrow x=\dfrac{1}{8}\)
Tương tự: \(F=5x-3x^2+6\)
\(=-3x^2+5x+6\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
\(\Rightarrow F_{max}=\dfrac{97}{12}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{5}{6}\)
bài 2 tìm giá trị nhỏ nhất của biểu thức sau
C = x mũ 2 - 4x + y mũ 2 - y + 5
Ta có C = x2 - 4x + y2 - y + 5
= \(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)
= \(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
=> Min C = 3/4
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy Min C = 3/4 <=> x = 2 ; y = 1/2
C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4
= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y
Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4
tìm giá trị nhỏ nhất của biểu thức:P=(x-2)mũ 2+trị tuyệt đối của y-x + 3
\(P=\left(x-2\right)^2+\left|y-x\right|+3\)
\(\left(x-2\right)^2>=0\forall x\)
\(\left|y-x\right|>=0\forall x,y\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
=>x=y=2
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
tìm giá trị nhỏ nhất của các biểu thức sau:
a (x-2) mũ 2+245
b (x+5)mũ 2 +(y-7)mũ2+987
c(x-2,5) mũ2+(y+4,8)mux 2 +(z-0,2) mũ2+1,85
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
tìm giá trị nhỏ nhất của biểu thứcM= (3x-1/2)^2-4
Bài giải
\(M=\left(3x-\frac{1}{2}\right)^2-4\)
Do \(\left(3x-\frac{1}{2}\right)^2\ge0\text{ với mọi }x\text{ }\Rightarrow\text{ }\left(3x-\frac{1}{2}\right)^2-4\ge-4\)
Dấu " = " xảy ra khi \(3x-\frac{1}{2}=0\text{ }\Rightarrow\text{ }3x=\frac{1}{2}\text{ }\Rightarrow\text{ }x=\frac{1}{6}\)
Vậy GTNN của \(M=-4\text{ khi }x=\frac{1}{6}\)
Tìm giá trị nhỏ nhất của biểu thức : |x +19| + |y - 5| + 1890
Tìm giá trị lớn nhất của biểu thức : -|x - 7| - |y + 13| + 1945
a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)
TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)
Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)