\(\left(\frac{3}{5}-\frac{2}{3}x\right)^3=-\frac{64}{125}\)
Tìm x, biết:
a) \(\left(\frac{-3}{4}\right)^{3x-1}=\frac{-27}{64}\)
b) \(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{265}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+3\right)^2}=\frac{64}{27}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
Tim x biet
k) \(\left[\left(3,75:\frac{1}{4}+2\frac{2}{5}.125\%\right)-\left(\frac{7}{2}.0,8-1,2:\frac{3}{2}\right)\right]:\left(1\frac{1}{2}+0,75\right)x=64\)
Chứng minh : \(\frac{\left(5^4-5^3\right)}{125^4}=\frac{64}{125}\)
Tìm x
a)\(^{3^x}+^{3^{x+2}}=810\)
b)\(\left(x+\frac{2017}{2018}\right)^6=0\)
Ta có : 3x + 3x + 2 = 810
=> 3x(1 + 32) = 810
=> 3x.10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
ta có \(3^3+3^x+2=810\)
=>\(3^x\left(1+3^2\right)=810\)
=>\(3^x.10=810\)
=>\(3^x=81\)
=>\(3^x=3^4\)
=>x=4
Vậy x=4
Chứng minh : \(\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{64}{125}\)
Tìm x
a)\(\left(x-2,5\right)^2\) = \(\frac{4}{9}\)
b)\(\left(2x+\frac{1}{3}\right)^3=\frac{-8}{27}\)
c) \(\frac{2}{3}.3^{x+1}-7.3^x=-405\)
d) \(\left(\frac{3}{5}-\frac{2}{3}x\right)^2=\frac{-64}{125}\)
Giúp mình
a)\(\left(x-2,5\right)^2=\frac{4}{9}\\ \left(x-\frac{5}{2}\right)^2=\left(\pm\frac{2}{3}\right)^2\\\Leftrightarrow\left\{{}\begin{matrix}x-\frac{5}{2}=\frac{2}{3}\\x-\frac{5}{2}=\frac{-2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{19}{6}\\x=\frac{11}{6}\end{matrix}\right. \)
vậy....
b)\(\left(2x+\frac{1}{3}\right)^3=\frac{-8}{27}\\ \left(2x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\\ 2x+\frac{1}{3}=\frac{-2}{3}\\ x=\frac{-1}{2}\)
vậy...
\(\frac{\left(5^4-5^3\right)}{125^4}-\frac{64}{125}\)
\(\frac{\left(5^4-5^3\right)}{125^4}-\frac{64}{125}\)
\(=\frac{\left(625-125\right)}{500}-\frac{64}{125}\)
\(=\frac{500}{500}-\frac{64}{125}\)
\(=0-0,51\)
\(=-0,51\)
\(\frac{\left(x-3\right)}{x+5}+\frac{x+5}{x-3}< 2\)
\(\frac{\left(x-3\right)^2+\left(x+5\right)^2}{\left(x-3\right)\left(x+5\right)}< 2\)
\(\frac{2x^2+4x+34}{x^2+2x-15}< 2\)
DÙNG PHÉP CHIA
=> \(2+\frac{64}{x^2+2x-15}< 2\)
<=> \(2+\frac{64}{\left(x-3\right)\left(x+5\right)}< 2\)
cmr :\(\frac{\left(5^4-5^3\right)^3}{125^5}\) =\(\frac{64}{25^3}\)
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!