Bài 5. CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )^2
– 9 luôn chia hết cho 4.
CMR: Với mọi số nguyên n giá trị biểu thức M = ( 2n + 3 )2 – 9 luôn chia hết cho 4.
M = 4x2 + 4x = 4x(x+1) luôn chia hết cho 4
Chứng minh rằng
a) Biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
b) Biểu thức ( 2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi giá trị của m , n
làm ơn giúp mình với
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Bài 1 viết biểu thức (4n+3)^2-25 Thành tích chứng minh với mọi số nguyên biểu thức (4n+3)^2-25 chia hết cho 4
Bài 2 :chứng minh với mọi số nguyên n biểu thức (2n+3)^2-9 chia hết cho 4
Bài 2:
\(\left(2n+3\right)^2-9\)
\(\rightarrow4n^2+12n+9-9\)
\(\rightarrow4n^2=12n\)
\(\rightarrow4n.\left(n+3\right)\)
\(\rightarrow4⋮4\)
\(\rightarrow4n⋮4\)
\(\rightarrow4n.\left(n+3\right)⋮4\)
\(\rightarrow\left(2n+3\right)^2-9⋮4\)
C/m rằng: Biểu thức n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n=-3n-2n=-5n chia hết cho 5
Vậy biểu thức n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
chứng minh biểu thức
n x (2n-3)-2nx(n+1) luôn chia hết cho 5 với mọi n là số nguyên
(n-1)x(3-2n)-nx(n+5) luôn chia hết cho 3 với mọi số nguyên
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
https://olm.vn/hoi-dap/detail/195347678157.html