x-1/(-4)=(-4)/x-1
Giải phương trình:
a)(x+1/x-2)^2+x+1/x-4-3(2x-4/x-4)^2=0
b)4/x^2(x+1)^2-4(1/x-1/x+1)+1=0
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
Giải phương trình về dạng ax + b = 0
1. (3x - 2)/3 - 2 = (4x + 1)/4
2. (x - 3)/4 + ( 2x - 1 )/3 = (2 - x)/6
3. 1/2 (x + 1) + 1/4(x + 3) = 3 - 1/3 (x + 2)
4 (x + 4)/5 - x + 4 = x/3 - (x - 2)/2
5. (4 - 5x)/6 = 2 (-x + 1)/2
Giải phương trình về dạng ax + b = 0
1. (3x - 2)/3 - 2 = (4x + 1)/4
2. (x - 3)/4 + ( 2x - 1 )/3 = (2 - x)/6
3. 1/2 (x + 1) + 1/4(x + 3) = 3 - 1/3 (x + 2)
4 (x + 4)/5 - x + 4 = x/3 - (x - 2)/2
5. (4 - 5x)/6 = 2 (-x + 1)/2
1) (3x-2)/3-2=(4x+1)/42) (x-3)/4+(2x-1)/3=(2-x)/63) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)4) (x+4)/5-x+4=x/3-(x-2)/25) (4-5x)/6=2(-x+1)/2 6) (-(x-3))/2-2=5(x+2)/4 7)2(2x+1)/5-(6+x)/3=(5-4x)/158) (7-3x)/2-(5+x)/5=1 9)(x-1)/2+3(x+1)/8=(11-5x)/310)(3+5x)/5-3=(9x-3)/4
1) (3x-2)/3-2=(4x+1)/4
2) (x-3)/4+(2x-1)/3=(2-x)/6
3) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)
4) (x+4)/5-x+4=x/3-(x-2)/2
5) (4-5x)/6=2(-x+1)/2
6) (-(x-3))/2-2=5(x+2)/4
7)2(2x+1)/5-(6+x)/3=(5-4x)/15
8) (7-3x)/2-(5+x)/5=1
9)(x-1)/2+3(x+1)/8=(11-5x)/3
10)(3+5x)/5-3=(9x-3)/4
1:
\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)
\(\Leftrightarrow x^2+5x=0\)
=>x=0 hoặc x=-5
3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
Quy đồng mẫu số của 1 phần 3; 4 phần 5 và 3 phần 4
1 | = | 1 x 5 x ? | = = | 20 |
3 | 3 x ? x 4 | ? |
4 | = | 4 x 3 x 4 | = = | 48 |
5 | 5 x ? x 4 | ? |
3 | = | 3 x 5 x ? | = = | ? |
4 | 4 x 5 x ?? | ? |
áp dụng hằng đẳng thức
X - 1 =
x2 - 1 =
x - 4 =
x2 - 4x + 4 =
x - 4\(\sqrt{x}\) + 4 =
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{2x}{x-1}\)
Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$
$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$
2. $x^2-1=(x-1)(x+1)$
3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)
4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$
6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$
$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$
Thực hiện phép nhân:
\(P=\frac{4x^4+1}{4\left(x+1\right)^4+1}.\frac{4\left(x+2\right)^4+1}{4\left(x+3\right)^4+1}...\frac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)