Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quân Trẩn Trọng
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Trần Tuyết Nhi
21 tháng 2 2017 lúc 20:52

Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có

3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d

=> d = -1 hoặc 1, do đó n - 5 và 3n - 14  là nguyên tố cùng nhau

vậy n - 5/3n - 14 là phân số tối giản

Trần Thị Bưởi
21 tháng 2 2017 lúc 21:03

123456789q

Senju Kawaragi
Xem chi tiết
Senju Kawaragi
28 tháng 2 2022 lúc 21:16

cíu batngo

Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 21:24

Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

=>d=1

=>UCLN(2n+1;3n+2)=1

=>2n+1/3n+2 là phân số tối giản

Đức Phạm
Xem chi tiết
Thanh Tùng DZ
8 tháng 6 2017 lúc 8:39

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

tth_new
8 tháng 6 2017 lúc 8:33

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs

tth_new
8 tháng 6 2017 lúc 8:53

Gọi a là ước chung của n^3 +2n và n^4 + 3n^2 + 1

n^3 + 2n chia hết cho a => n(n^3 + 2n) chia hết cho a = > n^4 + 2n^2 chia hết cho a (1)

n^4 + 3n^2 + 1 - (n^4 + 2n^2 )= n^2 +1 chia hết cho a = > (n^2 + 1) ^ 2 = n^4 + 2n^2 + 1  chia hết cho d (2)

Từ (1) và (2), suy ra:

(n^4 + 2n^2 + 1) - (n^4 + 2n ^2 ) chia hết cho a = > 1 chia hết cho a = > a = + - 1

Vậy phân số trên tối giản vì mẫu tử có ước chung là n + 1

le trung kien
Xem chi tiết
Đoàn Đức Hà
31 tháng 8 2021 lúc 15:13

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

Khách vãng lai đã xóa
efhdfigsfigeu
Xem chi tiết
Lê Thị Thảo Linh
5 tháng 4 2017 lúc 18:08

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 2 2021 lúc 10:18

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Khách vãng lai đã xóa

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

Khách vãng lai đã xóa
Trần Hà Phương
Xem chi tiết
nguyễn tuấn thảo
17 tháng 8 2018 lúc 8:15

Gọi d là ƯC(n3+2n;n4+3n2+1)

n3+2n chia hết d;n4+3n2+1 chia hết d

n(n3+2n) chia hết d ; n4+3n2+1 chia hết d

n4+2n2 chia hết d; n4+3n2+1 chia hết d

(n4+3n2+1) - (n4+2n2) chia hết d

n2+1 chia hết d

n(n2+1) chia hết d

n3+n chia hết d

(n3+2n)-(n3+n) chia hết d

n chia hết d

nchia hết d

(n2+1)-(n2) chia hết cho d

 1 chia hết d

d=1 

PS tối giản

Trần Thùy Dương
17 tháng 8 2018 lúc 8:16

Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :

+) \(n^3+2n⋮d\)

\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)   (1)

Và  \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)

Sad:(
Xem chi tiết
Nguyễn Ngọc Gia Huy
12 tháng 4 2023 lúc 19:28

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm