(1-1/2)x(1-1/2)x...x(1-100)
tính: a)(-1)x(-1)^2x(-1)^3x(-1)^4x...x(-1)^9x(-1)^10
b)[1/100-1^2]x[1/100-(1/2)^2]x[1/100-(1/3)^2]x...x[1/100-(1/20)^2]
Tính
a) (x-1/2)+(x-1/4)+(x-1/8)+...+(x-1/512)
Tìm x
a) (x-1/1×2)+(x-1/2×3)+...+(x-1/100×101)
b) (x-1)+(x-2)+(x-3)+...+(x-101)=5050
c) x+1/2+1/3+1/4+...+1/100=3/2+4/3+5/4++...+101/100
1/Tìm x,biết:
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
b)1+2+3+4+...+x=820
c)3(x+1)=9.27
d)x+2x+3x+...+99x+100x=15150
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
f)3x+3x+1+3x+2=351
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)
\(\Rightarrow101\cdot x+5050=5555\)
\(\Rightarrow101\cdot x=5555-5050\)
\(\Rightarrow101\cdot x=505\)
\(\Rightarrow x=505:101\)
\(\Rightarrow x=5\)
b) \(1+2+3+4+...+x=820\)
\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)
\(\Rightarrow\left(x+1\right)\cdot x:2=820\)
\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)
\(\Rightarrow x\cdot\left(x+1\right)=1640\)
Ta thấy: \(40\cdot41=1640\)
Vậy: \(x=40\)
tìm x ∈ Z
a)1+2+3+.....+x=5050
b)1/2+1/6+.......+1/x2+x=99/100
c)1/6+1/12+........+1/x2-x=59/100
d)x-2017+x-2016+.......+99+100=0
e)x-1+x-2+x-3+.........+x-2017=0
a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
b; \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{x^2+x}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{x.\left(x+1\right)}\) = \(\dfrac{99}{100}\)
\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
1 - \(\dfrac{1}{x+1}\) = 1 - \(\dfrac{1}{100}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{100}\)
\(x+1\) = 100
\(x=100-1\)
\(x=99\)
Vậy \(x=99\)
tìm x thuộc Z
a)1+2+3+.........+x=5050
b)1/2+1/6+........1x2+x=99/100
c)1/6+1/12+.......1/x2-x=59/100
d)x-2017+x-2016+.........+99+100=0
g)x-1+x-2+x-3+.......x-2017=0
ta có
1+2+3+.........+x=5050
=>\(\frac{x.\left(x+1\right)}{2}=5050\)
=>x.(x+1)=5050.2
=>x.(x+1)=10100
=>x.(x+1)=100.101
=>x=100
|x-1|+|x-2|+...|x-100|=2500
+ xét trường hợp x\geq 0
\Rightarrow |x-1|+|x-2|+...|x-100|=2500
hay x-1+x-2+.................+x-100=2500
\Rightarrow 100x-5050=2500
\Rightarrow x=755
+ xét trường hợp x<0
\Rightarrow |x-1|+|x-2|+...|x-100|=2500
hay 1-x+2-x+.............+100-x=2500
\Rightarrow 5050-100x=2500
\Rightarrow x=255
1 + ( 1+ 2 ) + 1+2+3+4) + ...1+2+3+......+100 / 100 x 1 + 99x2 + 98x3 + 2x99 + 1 x 100
A= (-1)^1 x 1 + (-1)^2 x 2 + (-1)^3 x3 +... + (-1)^99 x 99 + (-1)^100 x 100
(2+4+6+...+100) - (1+3+5+...+99) = ?
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = ?
3 x 4 + 4 x 5 + 5 x 6 + ... + 149 x 150 = ?
1 + (1 + 2) + ( 1 + 2 + 3) + (1 + 2 + 3 + 4) + ....... + (1 + 2 + 3 + ... + 99)
----------------------------------------------------------------------------------------------------------- ( gạch ngang phân số )
1 x 99 + 2.98 + 3.97 + ...... + 99 x 1
Bài 6 Tìm x
1) ( x+1 ) + ( x+2 ) + ( x+3 ) + ... + ( x+100 ) = 5750
2) ( 2x-1 ) + ( 4x-2 ) + ... + ( 200x - 100 ) = 5050
3) ( x+2 ) + ( x+4 ) + ( x+6 ) + ... + ( x + 100) = 2650