\(\frac{20^5\cdot5^{10}}{100^5}\)
a)A=\(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+...+\frac{1}{25\cdot27\cdot29}\)
b)\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1.11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
a) \(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+...+\frac{1}{25\cdot27\cdot29}\)
\(\Rightarrow4A=\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+...+\frac{4}{25\cdot27\cdot29}\)
\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\)
\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{27\cdot29}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)
\(\Rightarrow A=\frac{\frac{260}{783}}{4}=\frac{65}{783}\)
b) \(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
\(\Rightarrow100\cdot\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=100\cdot\left(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\right)\)
\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+...+\frac{100}{10\cdot110}\right)x=10\cdot\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{10}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)
\(\Rightarrow x=10\cdot\)
Bài 1: Rút gọn rồi quy đồng
\(\frac{4\cdot5+4\cdot11}{8\cdot7-4\cdot3}\) \(\frac{-15\cdot8+10\cdot7}{5\cdot6+20\cdot3}\)và \(\frac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^3\cdot11}\)
\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)
tính ( theo mẫu ) :
\(a,\frac{9}{10}\cdot\frac{5}{6}\) \(b,\frac{6}{25}:\frac{21}{20}\)\(c,\frac{40}{7}\cdot\frac{14}{5}\)\(d,\frac{17}{13}:\frac{51}{26}\)
Mẫu : a, \(\frac{9}{10}\cdot\frac{5}{6}=\frac{9\cdot5}{10\cdot6}=\frac{3\cdot3\cdot5}{5\cdot2\cdot3\cdot2}=\)3*3*5 / 5* 2* 3 * 2 = \(\frac{3}{4}\)
\(\frac{6x-5}{10+10}=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)
VT = 1/2.( 1-1/3+1/3-1/5+...+ 2/49-1/51)
= 1/2. 50/51
=> 6x-5/10+10 = 25/51
............. Tụ làm phàn còn lại nhé
Nhân cả 2 vê với 2 ta được:
\(\frac{2.\left(6x-5\right)}{20}\)=\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+...+\(\frac{2}{49.51}\)
<=>\(\frac{6x-5}{10}\)=\(1-\frac{1}{3}+\)\(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)
<=>\(\frac{6x-5}{10}=1-\frac{1}{51}\)
<=>\(6x-5=\frac{50}{51}.10\)
<=>\(x=\frac{755}{306}\)
mấy bn ơi mik lỡ ghi đề sai z
đề đúng là \(\frac{6x-5}{10x+1}=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{49.51}\)
\(\frac{10^3+2\cdot5^3+5^3}{65}\)
\(\frac{10^3+2.5^3+5^3}{65}=\frac{10^3+5^3.\left(2+1\right)}{65}=\frac{10^3+5^3.3}{65}\)
= \(\frac{10^3+375}{65}=\frac{1375}{65}\)
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+2.125+125}{65}=\frac{8.125+2.125+125.1}{65}=\frac{125\left(8+2+1\right)}{65}=\frac{125.11}{65}=\frac{1375}{65}=\frac{275}{13}\)
\(\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...........+\frac{1}{2005\cdot2010}\)
\(\frac{10^3+2\cdot5^5+5^3}{65}\)
Giúp minh với
\(\frac{10^3+2.5^3+5^3}{65}=\frac{1000+5^3.3}{65}=\frac{1000+375}{65}\)
= \(\frac{1375}{65}=\frac{275}{13}\)
\(\frac{10^3+2.5^5+5^3}{65}\)
= \(\frac{\left(2.5\right)^3+2.5^5+5^3}{5.13}\)
= \(\frac{2^3.5^3+2.5^5+5^3}{5.13}\)
= \(\frac{5^3\left(2^3+2+1\right)}{5.13}\)
= \(\frac{5^2.11}{13}\)
= \(\frac{275}{13}\)
Rút gọn lũy thừa:
A = \(\frac{8^5\cdot\left(-5\right)^8+2^5\cdot10}{2^{16}\cdot5^7+20^8}^9\)
\(\frac{2^{15}.5^8+2^{14}.5^9}{2^{16}.5^7+2^{16}.5^8}=\frac{2^{14}.5^8\left(2+5\right)}{2^{16}.5^7\left(1+5\right)}=\frac{2^{14}.5^8.7}{2^{16}.5^7.6}=\frac{5.7}{4.6}=\frac{35}{24}\)
\(A=\frac{4}{10\cdot2}+\frac{6}{2\cdot20}+\frac{15}{5\cdot20}+\frac{5}{5\cdot40};B=\frac{3}{1\cdot5}+\frac{5}{13\cdot1}+\frac{11}{13\cdot3}+\frac{2}{3\cdot26}\)
So sánh A với B