Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Hoàng
Xem chi tiết
Hà Chí Dương
12 tháng 3 2017 lúc 8:12

5x-5x=0x=0

Nguyễn Dăng Chung
12 tháng 3 2017 lúc 8:12

5x-5x=0

chuc ban hoc tot 

Die Devil
12 tháng 3 2017 lúc 8:13

\(5x-5x\)

\(????????\)

\(\text{Bn mún hỏi dj v~~~~}\)

\(5x-5x=0\)

~~~~~~~~~~~

Duong Thi Nhuong
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Ninh Thế Quang Nhật
14 tháng 3 2017 lúc 16:44

= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100

= 1 . 1/100

= 1/100

SAI thi mai len bao sai cho nao nha !!!!

Đức Phạm
14 tháng 3 2017 lúc 16:44

\(A=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{100}{100}-\frac{1}{100}\)

\(A=\frac{99}{100}\)

Nghi Ngo
14 tháng 3 2017 lúc 16:45

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

     \(=1-\frac{1}{100}\)

      \(=\frac{99}{100}\)

Xem chi tiết
Phùng Minh Quân
3 tháng 3 2018 lúc 10:05

Ta có : 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)

Chúc bạn học tốt ~

Huỳnh Phước Mạnh
3 tháng 3 2018 lúc 10:34

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

                                                              \(=1-\frac{1}{100}=\frac{99}{100}\)

ĐÚNG 100%

                                                               

❤Trang_Trang❤💋
3 tháng 3 2018 lúc 12:05

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

satoshi-gekkouga
Xem chi tiết
satoshi-gekkouga
29 tháng 6 2021 lúc 17:14

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Nguyễn Đức Chung
29 tháng 6 2021 lúc 17:19

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

Khách vãng lai đã xóa
dê gia
20 tháng 8 lúc 8:41

con khỉ tao đéo b

 

Võ Thị Cẩm Thy
Xem chi tiết
Trần Hải An
16 tháng 11 2015 lúc 8:56

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Sagittarus
Xem chi tiết
Nguyễn Đình Dũng
31 tháng 5 2015 lúc 22:50

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

 = \(1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Hoàng Thu Hường
25 tháng 4 2017 lúc 14:26

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

thấy đúng thì k cho mk nha mấy bạn

Đinh Tuấn Việt
31 tháng 5 2015 lúc 22:49

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bùi Anh Thịnh
Xem chi tiết
ruby little angel
15 tháng 9 2015 lúc 16:23

mk bít lm cách lớp 5, vừa học

Cần ko bn

Sagittarus
Xem chi tiết
Trần Thị Thịnh
30 tháng 5 2015 lúc 22:36

Vì 2-1=1; 3-2=1; 4-3=1; ...

\(\Rightarrow=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow=\frac{1}{1}-\frac{1}{100}\)

\(\Rightarrow=\frac{99}{100}\)

nguyen thuy chi
1 tháng 3 2017 lúc 19:30

99/100 nha ban

chuc ban hoc gioi

Dinh Feng TN
1 tháng 3 2017 lúc 19:30

đúng rồi

Phạm Trọng An Nam
Xem chi tiết
ST
30 tháng 7 2018 lúc 10:13

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\cdot\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)