Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Be
Xem chi tiết
Thầy Giáo Toán
9 tháng 9 2015 lúc 23:12

Điều kiện \(x\ge1.\)
Phương trình tương đương với \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\leftrightarrow-\sqrt{x-1}=-17\leftrightarrow\sqrt{x-1}=17\leftrightarrow x=290.\)

Nguyễn Duyên
Xem chi tiết
Ngoc Anhh
5 tháng 8 2018 lúc 20:07

\(3x-7\sqrt{x}+4=0\)

\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}\)

Không Tên
6 tháng 8 2018 lúc 19:54

ĐK: \(x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=>  \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\sqrt{\frac{1}{64}\left(x-1\right)}=-17\)

<=>   \(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=> \(-\sqrt{x-1}=-17\)

<=>   \(x-1=17^2\)

<=>   \(x=290\)
Vậy....

Mark Kim
Xem chi tiết
 ღ ๖ۣۜBFF  ๖ۣۜNhi  ღ
2 tháng 7 2019 lúc 19:11

a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

<=>\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=>\(\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+\frac{6}{2}\right)=-17\)

<=>\(\sqrt{x-1}=-17\)

<=>x-1=17

<=>x=18

Vậy pt có nghiệm là x=18

Kiêm Hùng
2 tháng 7 2019 lúc 19:12

\(a.ĐK:x-1\ge0\Leftrightarrow x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{27}{2}\sqrt{x-1}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{27}{2}+24\sqrt{\frac{1}{64}}\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}.\left(-10\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\frac{-17}{-10}=\frac{17}{10}\)

\(\Leftrightarrow x-1=\left(\frac{17}{10}\right)^2\)

\(\Leftrightarrow x=\frac{289}{100}+1=3,89\left(TM\right)\)

Vậy \(S=\left\{3,89\right\}\)

\(b.ĐK:x^2+2\ge0\)

\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow9\sqrt{x^2+2}+2\sqrt{x^2+2}-25\sqrt{x^2+2}=-3\)

\(\Leftrightarrow\sqrt{x^2+2}\left(9+2-25\right)=-3\)

\(\Leftrightarrow\sqrt{x^2+2}=\frac{-3}{-14}=\frac{3}{14}\)

\(\Leftrightarrow x^2+2=\left(\frac{3}{14}\right)^2\)

\(\Leftrightarrow x=\sqrt{\frac{9}{196}-2}=\sqrt{-\frac{383}{196}}\left(vl\right)\)

Vậy \(S=\varnothing\)

Mấy câu kia làm tương tự

 ღ ๖ۣۜBFF  ๖ۣۜNhi  ღ
2 tháng 7 2019 lúc 19:23

b)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

<=>\(\sqrt{9\left(x^2+2\right)}+2\sqrt{x^2+2}-\sqrt{25\left(x^2+2\right)}+3=0\)

<=>\(3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=>\(\sqrt{x^2+2}\left(3+2-5\right)=-3\)

<=>0x=-3

Vậy pt vô nghiệm

Huyền Phạm
Xem chi tiết
₮ØⱤ₴₮
24 tháng 7 2019 lúc 9:40

B4

a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)

b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)

c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)

d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

₮ØⱤ₴₮
24 tháng 7 2019 lúc 9:51

B3

a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\sqrt{x-1}=17\)

\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)

\(x=290\left(tm\right)\)

₮ØⱤ₴₮
24 tháng 7 2019 lúc 10:04

b)\(\sqrt{4x^2-9}=2\sqrt{2x+3}\) \(đk:x\ge-\frac{3}{2}\)

\(\sqrt{\left(2x-3\right)\left(2x+3\right)}-2\sqrt{2x+3}=0\)

\(\sqrt{\left(2x+3\right)}\cdot\left(\sqrt{2x-3}-2\right)=0\)

\(\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}-2=0\end{matrix}\right.\left[{}\begin{matrix}2x+3=0\\\sqrt{2x-3}=2\end{matrix}\right.\left[{}\begin{matrix}x=-\frac{3}{2}\\2x-3=4\left(tm\right)\\2x-3=-4\left(ktm\right)\end{matrix}\right.\left[{}\begin{matrix}x=-\frac{3}{2}\left(tm\right)\\x=\frac{7}{2}\left(tm\right)\end{matrix}\right.\)

Hồng Ngọc
Xem chi tiết
Nguyễn Đức Anh
29 tháng 11 2019 lúc 20:14

a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right) \)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy x=3

Khách vãng lai đã xóa
Thanh
Xem chi tiết
Phùng Khánh Linh
8 tháng 8 2018 lúc 20:29

\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\left(x\text{ ≥}1\right)\)

\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(-\sqrt{x-1}=-17\)

\(x=290\left(TM\right)\)

KL..................

Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
9 tháng 7 2019 lúc 13:20

a, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24\sqrt{x-1}}{8}=-17\)

\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Rightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Rightarrow\sqrt{x-1}.-1=-17\)

\(\Rightarrow\sqrt{x-1}=17\)

\(\Rightarrow x-1=289\)

\(\Rightarrow x=290\)

b, \(3x-7\sqrt{x}+4=0\)

\(\Rightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}}\)

c, \(-5x+7\sqrt{x}+12=0\)

\(\Rightarrow-5x-5\sqrt{x}+12\sqrt{x}+12=0\)

\(\Rightarrow-5\sqrt{x}\left(\sqrt{x}+1\right)+12\left(x+1\right)=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)\left(-5\sqrt{x}+12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\-5\sqrt{x}+12=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1VN\\-5\sqrt{x}=-12\end{cases}}\Rightarrow\orbr{\begin{cases}\\\sqrt{x}=\frac{12}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\frac{144}{25}\end{cases}}}\)

Nguyễn Linh Chi
9 tháng 7 2019 lúc 13:19

1) ĐK: \(x-1\ge0\Leftrightarrow x\ge1\)

pt \(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}.3\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=17^2=289\Leftrightarrow x=290\left(tm\right)\)

b) \(3x-7\sqrt{x}+4=0\)

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\Leftrightarrow t^2=x\)

Ta có phương trình ẩn t: 

\(3t^2-7t+4=0\)( giải đen ta)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{4}{3}\end{cases}}\)

Với t=1 ta có: \(\sqrt{x}=1\Leftrightarrow x=1\) (tm)

Với t=4/3 ta có: \(\sqrt{x}=\frac{4}{3}\Leftrightarrow x=\frac{16}{9}\) (tm)

Câu c em làm tương tự  câu b nhé!

Tiên Hồ Đỗ Thị Cẩm
9 tháng 7 2019 lúc 19:38

Vy Thị Hoàng Lan ơi,  cảm ơn bạn đã giúp mình đối chiếu kết quả cũng như cách làm, nhưng mà mình có vài ý kiến:

- Khi giải xong bạn cần phải kết luận: vậy tập nghiệm của pt đã cho là:S=...( không có sẽ bị trừ 0,25).

-Đây là giải pt nên không phải dùng dấu ''=>'' mà phải là ''<=>''; trừ khi quy đồng khử mẫu thì dùng dấu kia.

- Mà chỗ \(\sqrt{x}=-1\)bạn ghi '' vô nghiệm'' rồi tí bạn kết luận là ''tập nghiệm của pt đã cho là'' thì nó hơi kì, mình nghĩ vậy nên chỗ đó mình nghĩ bạn nên ghi là ''vô lí'' vì căn của một số không âm là một số dương theo lý thuyết  sẽ hợp lí hơn!

chàng trai 16
Xem chi tiết
chàng trai 16
24 tháng 9 2016 lúc 20:33

câu a tớ giải được rồi, các bn giải câu b giùm mk

nguyễn minh hà
Xem chi tiết
Nguyễn Thị Anh
5 tháng 8 2016 lúc 19:46

Hỏi đáp Toán

Huyền Nguyễn
5 tháng 8 2016 lúc 20:12

\(\Leftrightarrow-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\) ĐK \(\sqrt{6x^2-12x+7}\ge0\)

Đặt \(t=x^2-2x\left(t\ge0\right)\Leftrightarrow pt:-t+\sqrt{6t+7}=0\Leftrightarrow\sqrt{6t+7}=t\\ 6t+7-t^2=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(tm\right)\\t=-1\left(ktm\right)\end{array}\right.\)

Với \(t=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x=1\pm2\sqrt{2}\left(tm\right)\)

Vậy S={​\(1\pm2\sqrt{2}\)}