Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Quang Thái
Xem chi tiết
Xyz OLM
1 tháng 8 2021 lúc 10:58

Ta có : ax = by \(\Rightarrow\frac{x}{b}=\frac{y}{a}=\frac{x-y}{b-a}=1\left(\text{vì }x-y=b-a\right)\)

\(\Rightarrow x=b;y=a\)

Vậy x = b ; y = a

Khách vãng lai đã xóa
Vũ Thanh Huyền Linh
Xem chi tiết
Nguyễn Phương Thúy (tina...
20 tháng 2 2021 lúc 20:35

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 20:35

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

👁💧👄💧👁
20 tháng 2 2021 lúc 20:36

\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)

hocsinhngoan
Xem chi tiết
Vladimir Putin
2 tháng 11 2023 lúc 20:46

Áp dụng công thức là ra😎

Minh Thư Đoàn Nguyễn
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
15 tháng 10 2018 lúc 11:45

Ta có :

\(\frac{x}{3}=\frac{y}{5}\)  (1)

\(\left(x+2\right)+\left(y+3\right)=21\)

\(\Leftrightarrow x+2+y+3=21\)

\(\Leftrightarrow x+y=16\)

\(\Leftrightarrow x=16-y\)

Thay x = 16 - y vào (1) ta được :

\(\frac{16-y}{3}=\frac{y}{5}\)

\(\Rightarrow5\left(16-y\right)=3y\)

\(\Leftrightarrow80-5y=3y\)

\(\Leftrightarrow80=8y\)

\(\Leftrightarrow y=10\)

\(\Rightarrow x=16-10=6\)

Vậy x = 6 và y = 10

Phạm Trà My
Xem chi tiết
Hoàng Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 10:02

ĐKXĐ: x>=0 và 1-y>=0

=>x>=0 và y<=1

\(\sqrt{x\left(1-y\right)}=\sqrt{x}\cdot\sqrt{1-y}\) nó sẽ đúng khi cả hai biểu thức \(\sqrt{x};\sqrt{1-y}\) đều cùng xác định trên R

Do đó: Đẳng thức này sẽ đúng với \(\left\{{}\begin{matrix}x>=0\\y< =1\end{matrix}\right.\)

Drangon193
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
12 tháng 9 2023 lúc 17:18

`# \text {Kaizu DN}`

`a)`

`(3x + 6) + (7x - 14) = 0?`

\(\Rightarrow3x+6+7x-14=0\\ \Rightarrow\left(3x+7x\right)+\left(6-14\right)=0\\ \Rightarrow10x-8=0\\ \Rightarrow10x=8\Rightarrow x=\dfrac{8}{10}\\ \Rightarrow x=\dfrac{4}{5}\)

Vậy, \(x=\dfrac{4}{5}\) 

`b)`

`17y + 35 + 4x + 17 = 42`

\(\Rightarrow\left(17y+17\right)+\left(35+4x\right)=42\\ \Rightarrow17\left(y+1\right)+\left(35+4x\right)=42\)

Bạn xem lại đề ;-;.

Minggo Binggo
Xem chi tiết
Phan Nghĩa
27 tháng 9 2020 lúc 12:46

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

Khách vãng lai đã xóa
Xyz OLM
27 tháng 9 2020 lúc 12:47

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

Khách vãng lai đã xóa
Khanhngoc Vo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 20:17

x/y=3/4

=>x/3=y/4

=>x/15=y/20

y/z=5/7

=>y/5=z/7

=>y/20=z/28

=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3

=>x=45; y=60; z=84