cho \(x=\frac{b^2+c^2+a^2}{2ab}\)\(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
tính P=x+y+xy
Cho: \(x=\frac{b^2+c^2-a^2}{2ab};\) \(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
Tính giá trị: \(M=\frac{x+y}{1-xy}\)
rút gọn các phân thức
a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)
Lời giải:
a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
c)
\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)
d)
Biểu thức không rút gọn được
e)
\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)
Cái này dễ nè : cho x > y > 0 và 2x2 + 2y2 = 5xy. Tính E = \(\frac{x+y}{x-y}\)
b) Cho a,b,c đôi một khác nhau, thỏa mãn ab + bc + ac = 1.Tính
1. A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
2. B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
b) 1. vì ab + bc + ac = 1
Ta có : a2 + 1 = a2 + ab + bc + ac = ( a+ c ) ( a + b )
b2 + 1 = b2 + ab + bc + ac = ( a + b ) ( b + c )
c2 + 1 = c2 + ab + bc + ac = ( a + c ) ( b + c )
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\)
thay vào , ta được : \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2}=1\)
2. Ta có : a2 + 2bc - 1 = a2 + 2bc - ( ab + bc + ac ) = a2 + bc - ab - ac = ( a - c ) ( a - b )
Tương tự : b2 + 2ca - 1 = ( b - c ) ( b - a ) ; c2 + 2ab - 1 = ( c - a ) ( c - b )
\(\Rightarrow\)( a2 + 2bc - 1 ) ( b2 + 2ac - 1 ) ( c2 + 2ab - 1 ) = - ( a - b )2 ( b - c )2 ( c - a )2
Thay vào, ta được : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=-1\)
1/ GTLN của biểu thức P=(x4 + 3y2 +25)2
2/ Tính GTBT : P=\(\frac{y}{x}+\frac{x}{8-4y}\)với x, y nhận giá trị l2x-1l=1; ly+2l=4
3/ cho a+b+c=\(\frac{1}{2}\); \(a\ne-b\), \(b\ne-c\),\(c\ne a\). Tính:
P=\(2ab+\frac{c}{\left(a+b\right)^2}\cdot2bc+\frac{a}{\left(b+c\right)^2}\cdot\frac{2\left(a+b\right)}{\left(a+b\right)^2}\)
4/cho x, y, x thỏa mãn x+y+z=3. tính GTLN của P=xy+yz+zx
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
Cho x = \(\frac{b^2+c^2-a^2}{2bc}\) ; y = \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\). Tính giá trị P = x+y+xy
\(P=x+y+xy\Leftrightarrow P+1=\left(x+1\right)\left(y+1\right)=\left(\frac{b^2+c^2-a^2}{2bc}+1\right)\left(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1\right)\)
\(=\left(\frac{\left(b+c\right)^2-a^2}{2bc}\right)\left(\frac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}\right)=\frac{b^2+2bc+c^2-b^2+2bc-c^2}{2bc}=\frac{4bc}{2bc}=2\)
\(\Rightarrow P=1\)
Nhận xét đề Toán. Có 2 cách giải cơ bản cho bài toán dạng này. 1 là thế trực tiếp x và y vào P và tính luôn, cách này quá thường, ai cũng nhìn ra, chỉ xài khi ta bí cách 2. Cách 2 là biến đổi P rồi mới thế.
Ở đây mình trình bày cách 2.
P = x + y + xy = x + (x +1) * y
= x + P1
P1 =( \(\frac{b^2+c^2-a^2}{2bc}\)+ 1) * \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{\left(b+c\right)^2-a^2}{2bc}\)* \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
= \(\frac{a^2-\left(b-c\right)^2}{2bc}\)
P = x + P1 = \(\frac{b^2+c^2-a^2}{2bc}\)+ \(\frac{a^2-\left(b-c\right)^2}{2bc}\)= \(\frac{2bc}{2bc}\)= 1
Chúc bạn ngày càng học giỏi và xinh gái.
Giá trị của \(P=1\)và các làm giống như hai bạn
~ Chúc bạn học giỏi ~
Cho x = \(\frac{b^2+c^2-a^2}{2bc}\); y = \(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\). Tính giá trị P = x + y +xy
x+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
y(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:left; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
P=x+y+xy=x+y(x+1)=b2+c2−a22bc+a2−(b−c)22bc=b2+c2−a2+a2−(b−c)22bc=1" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:40.583em; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">
Cho \(x=\frac{b^2+c^2-a^2}{2bc}\);\(y=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a}\)
Tính xy+x+y+2018
Thực hiện phép tính :
a) \(\left(\frac{x-y}{x+y}+\frac{x+y}{x-y}\right).\left(\frac{x^2+y^2}{2xy}+1\right).\frac{xy}{x^2+y^2}\)
b) \(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\)
P/s : Giúp chauu với nhá mấy bacc kewtt :>>
\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Sr nha
Kq mik nhầm
Ko phải -2b đâu mà = 0
Oce :) Thks Moon :33