Bài 2: Cho tam giác ABC cân tại A có AB = AC = 5cm, BC = 3cm. Kẻ trung tuyến AM.
a) Chứng minh rằng AM vuông góc với BC
b) Tính độ dài AM.
Cho tam giác ABC cân tại A có AB =AC=5cm, BC=3cm. Kẻ trung tuyến AM
a) chứng minh rằng AM vuông góc BC
b) Tính độ dài AM
Bài 1 : cho tam giác ABC Trên tia đối cua tia BA lấy điểm D sao cho BD=BA. Trên canhk BC lấy điểm E sao cho BE = 1 phần 3 BC. Gọi K là giao điểm cua AE và CD chứng Minh rằng DK = KC
Bài 2 : cho tam giac ABC cân tại A có AB = AC = 5cm, BC = 3cm Kẻ trung tuyến AM
a) Chứng minh rằng AM vuông góc với BC
b ) Tính độ dài AM
Mình xin làm bài 2 thôi.
Bài 2:
a/ Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao
=> AM \(⊥\)BC
b/ Ta có M là trung điểm BC => BM = CM = 1/2 BC = 1/2 x 3 = 1,5 (cm)
Xét tam giác ABM vuông tại M có:
\(AM^2+BM^2=AB^2\left(pytago\right)\)
\(AM^2+1,5^2=5^2\)
\(AM^2+2,25=25\)
\(AM^2=22,75\Rightarrow AM=\sqrt{22,75}\approx4,8\left(cm\right)\)
PS: Câu b bạn dùng pytago với tam giác bên kia cũng dc nha
Bài 2 bạn kia giải đúng rồi nên mình làm bài 1 thôi nhé
Tam giác ABC cân tại A có AB = AC = 3cm . Kẻ đường trung tuyến AM .
A) Chứng minh rằng AM vuông góc BC
B) Kẻ MD vuông góc AB , ME vuông góc AC , Chứng minh MD=ME
C) Chứng minh tam giác ADE cân , từ đó suy ra DE song song BC
Bài 1. Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC tại M
a) Chứng minh AM là trung tuyến của tam giác
b) Biết AB = 15 cm; BC = 12 cm. Tính độ dài đường trung tuyến AM.
Tam giác ABC cân tại A có AB=AC=34cm, BC=32cm. Kẻ đường trung tuyến AM a) Chứng minh rằng AM vuông góc BC b) Tính độ dài AM c)Kẻ MF vuông góc AB;ME vuông góc AC. C/m FE song song BC d)so sánh BM và ME
a.Ta có: AB=AC ( gt )
=> Tam giác ABC cân tại A
Mà AM là đường trung tuyến => AM cũng là đường cao
=> AM vuông góc với BC
b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )
=> BH = 32 : 2 = 16cm
Áp dụng định lý pitago vào tam giác vuông ABM, có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)
c.Xét tam giác vuông BMF và tam giác vuông CME, có:
góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)
=> BF = CE ( 2 cạnh tương ứng )
=> AF = AE ( AB = AC; BF = CE )
=> Tam giác AEF cân tại A
=> AM vuông với EF (1)
Mà AM cũng vuông với BC (2)
Từ (1) và (2) suy ra EF//BC
d. ta có: BM = CM ( gt ) (3)
Mà trong tam giác vuông MCE có ME là cạnh huyền
=> \(ME>MC\) (4)
Từ (3) và (4) suy ra \(ME>MB\)
Tam giác ABC cân tại A có AB=AC=34cm, BC=32cm. Kẻ đường trung tuyến AM a) Chứng minh rằng AM vuông góc BC b) Tính độ dài AM c)Kẻ MF vuông góc AB;ME vuông góc AC. C/m FE song song BC d)so sánh BM và ME
a: Ta có:ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: BM=CM=BC/2=16cm
=>AM=30(cm)
c: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
\(\widehat{FAM}=\widehat{EAM}\)
Do đó: ΔAFM=ΔAEM
Suy ra: AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
Cho tam giác ABC cân tại A có AB=34cm,BC=32cm.Kẻ đường trung tuyến AM.
A)chứng minh AM vuông góc BC.
B)tính AM
a.Ta có: AM là đường trung tuyến trong tam giác cân ABC
=> Cũng là đường cao
=> AM vuông góc với BC
b.Có AM là đường trung tuyến \(\Rightarrow BM=BC:2=32:2=16cm\)
Áp dụng định lý pytago vào tam giác vuông ABM, có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=34^2-16^2\)
\(AM=\sqrt{900}=30cm\)
\(a)\text{Xét }\Delta ACM\text{ và }\Delta ABM\text{ có:}\)
\(AB=AC\left(\Delta ABC\text{ cân tại A}\right)\)
\(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\)
\(AM\text{ chung}\)
\(\Rightarrow\Delta ACM=\Delta ABM\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMC}=\widehat{AMB}\left(\text{hai góc tương ứng}\right)\)
\(\text{Mà chúng kề bù}\)
\(\Rightarrow\widehat{AMC}=\widehat{AMB}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow AM\perp BC\)
\(b)\text{Ta có:}\Delta ACM=\Delta ABM\left(cmt\right)\)
\(\Rightarrow CM=BM\left(\text{hai cạnh tương ứng}\right)\)
\(\Rightarrow CM=BM=\dfrac{BC}{2}=\dfrac{32}{2}=16\left(cm\right)\)
\(\text{Xét }\Delta AMB\text{ vuông tại M có:}\)
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=AB^2-BM^2\left(\text{định lý Py ta go}\right)\)
\(\Rightarrow AM^2=34^2-16^2=1156-256=900\)
\(\Rightarrow AM=\sqrt{900}=30\left(cm\right)\)
Cho tam giác ABC cân tại A có AB=AC=5cm,BC=3cm.Kẻ trung tuyến AM. Chứng Minh Rằng AM vuông góc với BC
Đề thiếu yêu cầu hay là thừa dữ kiện? Thực sự cm \(AM⊥BC\)không cần đến độ dài cạnh. Cần \(\Delta\)cân và 1 đường (ở đây là trung tuyến) là đủ!
(Bạn tự vẽ hình nhé!)
Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AM\)vừa là trung tuyến vừa là đường cao \(\Rightarrow AM⊥BC\)
Cho tam giác ABC cân tại A. kẻ AM vuông góc với bc tại m. cho biết AB = 5 cm. MB= 3cm a. Tính độ dài AM,AC b. Từ b kẻ đường thẳng vuông góc với AC tại n và cắt AB tại h Chứng minh rằng:∆ HMB= ∆HMC c. Từ c kẻ ch cắt AB tại d Chứng minh rằng hai đường thẳng CD và AB vuông góc với nhau d. Nếu góc bac bằng 90 độ Chứng minh rằng AB + AC > AM+BM