Tìm x,y biết : x/12 =y/3 và x-y=36
Tìm x,y biết :x/12=y/3và x-y=36
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{12}\) = \(\frac{y}{3}\) = \(\frac{x-y}{12-3}\) \(\frac{36}{9}\) = 4
=> \(\frac{x}{12}\) = 4 => x= 12.4= 48
\(\frac{y}{3}\) = 4 => y= 3.4= 12
Chúc bn học tốt
Ta có: \(\frac{x}{12}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{x-y}{9}\)
Mà \(x-y=36\)(theo bài cho)
\(\Rightarrow\frac{x}{12}=\frac{y}{3}=\frac{36}{9}=4\)
+\(\frac{x}{12}=4\Leftrightarrow x=4.12=48\)
+\(\frac{y}{3}=4\Leftrightarrow y=4.3=12\)
Vậy \(\hept{\begin{cases}x=48\\y=12\end{cases}}\)
Ta có: \(\frac{x}{12}=\frac{y}{3}\)và x - y = 36
Áp dụng tính chất DTSBN, ta có: \(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{4}=9\)
=> \(\hept{\begin{cases}\frac{x}{12}=9\\\frac{y}{3}=9\end{cases}\Rightarrow\hept{\begin{cases}x=108\\y=27\end{cases}}}\).
Bài 1: Cho biết 2 đại lượng x và y tỉ lệ thuận với nhau biết x= 12 thì y=36.
a) Tìm hệ số tỉ lệ.
b) Biểu diễn y theo x
c) Tìm y khi x=10 ; x=-2
Tìm x y biết \(\frac{x}{12}\)=\(\frac{y}{3}\)và x*y=36
Đặt x=y=k
Được x=12k, y=3k
Ta có x.y=36
=> 12k.3k=36
=> 36k^2=36
=> k^2=1
=> k=1 hoặc -1
*, Nếu k=1 thì x=12, y= 3
*, Nếu k=-1 thì x=-12, y=-3
Tìm các số nguyên x,y biết : a,-1/3<x/36<y/18<-1/4
b, -7/12<x-1/4<2/3
a: =>-12<x<2y<-9
=>x=-11; y=-5
b: =>-7<3(x-1)<8
\(\Leftrightarrow3\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
\(\Leftrightarrow x-1\in\left\{2;1;0;-1;-2\right\}\)
hay \(x\in\left\{3;2;1;0;-1\right\}\)
Tìm x,y,z biết
a,x/2=y/3=z/4 và x+z=18
b,x/5=y/6=z/7 và x-y=36
c,x/4=y/-7 và x-y=33
d,x/5=y/-6=z/7 và 2x+y-z=49
e,x+1/2=y+2/3=z+3/4 và x+y+z=21
g,x/4=y/3 và x*y=12
h,x/5=y/3 và x^2-y^2=16
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
tìm hai số x,y biết : x/3 = y/6 và x+y =36
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{36}{9}=4\)
=>x=12; y=24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/6=(x+y)/(3+6)=36/9=4`
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=4\\\dfrac{y}{6}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot3=12\\y=4\cdot6=24\end{matrix}\right.\)
Tìm x,y,z biết:
a,\(\frac{x}{12}=\frac{y}{3},4y=5z\)và x-y+z=-36
b.\(2x=3y\)và x2-y2=25
2x=3y=>x/3=y/2=>x^2/ 9=y^2/ 4
áp dụng t/c DTSBN:
x^2-y^2/ 9-4=25/5=5
=> x^2=45 =>x=+_ căn 45
y^2=20=> y=+_ căn 20
1)Tìm 2 số x và y biết x/3=y/-2 và 2x+5y=-12
2) Tìm 2 số x và y biết x:y=4:5 và x-y =13
3) Tìm 2 số x và y biết 4x=7y và x-y=12
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
Tìm x , y , z biết :
a ) \(\frac{x}{y}=-2\) và x + y = 12
b ) \(\frac{x}{y}=\frac{7}{10}\) và x y = 36
c ) \(\frac{2x}{3y}=\frac{-1}{3}\) và - 2x + 3y = 7
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)