a=1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow3A+A=\left(...\right)+\left(...\right)\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3.4A=3-1+\frac{1}{3}-...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow12A+4A=\left(...\right)+\left(...\right)\)
\(\Rightarrow16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}< 3\)
\(\Rightarrow A< \frac{3}{16}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Chứng minh rằng :
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{99}{100!}<1\)
b) \(\frac{1\times2-1}{2!}+\frac{2\times3-1}{3!}+\frac{3\times4-1}{4!}+\cdots+\frac{99\times100-1}{100}<2\)
c) \(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+\cdots+\frac{1}{49\times50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+\cdots+\frac{1}{50}\)
c: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{49\cdot50}\)
\(=1-\frac12+\frac13-\frac14+\cdots+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{49}+\frac{1}{50}-2\left(\frac12+\frac14+\cdots+\frac{1}{50}\right)\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{50}-1-\frac12-\cdots-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\cdots+\frac{1}{50}\)
giúp em câu a b nx dc hem tại khó quá em chx học kiểu chấm than ở mẫu số
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
CMR:
a, \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b, \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
CMR
a)\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng Minh Rằng
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+.....+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
Chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
\(=\frac{16+4+1}{64}\)
\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)