Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Phúc Lộc
Xem chi tiết
Mai Đức Hạnh
15 tháng 1 2017 lúc 23:45

Giả sử  2016k + 3 = a3 với k và a là số nguyên.

Suy ra: 2016k  = a3 – 3

Ta thấy 2016k 7

Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3  

Thật vậy:  Ta biểu diễn a = 7m + r, với r .

Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.

Mà 2016k luôn chia hết cho 7,

 nên a3 – 3  2016k.

Bài toán được chứng minh

Tran Ngoc Ha
5 tháng 1 2019 lúc 16:28

no biet tao hoc lop 5 ma hoi lop 7,8

Linh Linh
Xem chi tiết
Mai Đức Hạnh
15 tháng 1 2017 lúc 23:37

Giả sử  2016k + 3 = a3 với k và a là số nguyên.

Suy ra: 2016k  = a3 – 3

Ta thấy 2016k 7

Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3  

Thật vậy:  Ta biểu diễn a = 7m + r, với r .

Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.

Mà 2016k luôn chia hết cho 7,

 nên a3 – 3  2016k.

Bài toán được chứng minh

Nguyễn Linh Phương
Xem chi tiết
Phan Thế Anh
Xem chi tiết
Đỗ Quỳnh Mai
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 7 2016 lúc 17:05

Gọi ba số nguyên dương liên tiếp lần lượt là n , n+1 , n+2 (\(n\in Z+\))

Ta có : \(n\left(n+1\right)\left(n+2\right)=\left(n^2+n\right)\left(n+2\right)=n^3+2n^2+n^2+2n=n^3+3n^2+2n\)

Mặt khác : \(n^3< n^3+3n^2+2n< n^3+3n^2+3n+1\)

\(\Rightarrow n^3< n^3+3n^2+2n< \left(n+1\right)^3\)(1)

Vì n là số nguyên dương nên từ (1) ta có \(n\left(n+1\right)\left(n+2\right)\) không là lập phương của một số tự nhiên.

Nguyễn Tất Anh Quân
Xem chi tiết
Lê Thị Kim Liên
13 tháng 8 2017 lúc 18:12

có a^3 + b^3 + c^3 chia hết cho 9 (1)

giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )

=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1

do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )

=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )

=> 1 trong 3 số a, b, c, là bội của 3

Quân Tạ Minh
Xem chi tiết
v bts
24 tháng 9 2017 lúc 19:52

mị lớp > chị nên đừng hỏi tui cái này

Dark Magician
Xem chi tiết