Chứng minh răng nếu k là một số nguyên thì 2016k+3 không là số lập phương. (Số lập phương là lập phương của số nguyên)
Chứng minh rằng: Với k là số nguyên thì 2016k+3 không phải là lập phương của 1 số nguyên
Chứng minh rằng với k là số nguyên thì 2016k+3 không phải là lập phương của một số nguyên.
Giả sử 2016k + 3 = a3 với k và a là số nguyên.
Suy ra: 2016k = a3 – 3
Ta thấy 2016k 7
Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3
Thật vậy: Ta biểu diễn a = 7m + r, với r .
Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.
Mà 2016k luôn chia hết cho 7,
nên a3 – 3 2016k.
Bài toán được chứng minh
CMR với mọi số thực k thì 2016k+3 không phải là lập phương của một số nguyên
Giả sử 2016k + 3 = a3 với k và a là số nguyên.
Suy ra: 2016k = a3 – 3
Ta thấy 2016k 7
Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3
Thật vậy: Ta biểu diễn a = 7m + r, với r .
Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.
Mà 2016k luôn chia hết cho 7,
nên a3 – 3 2016k.
Bài toán được chứng minh
Chứng minh với n là số nguyên thì 2016n +3 không là lập phương của một số nguyên. Mọi người giải giúp nhé! Thanks ạ!
Cho n là số nguyên dương. Chứng minh nếu n^2 là hiệu lập phương của 2 số tự nhiên liên tiếp thì n là tổng bình phương của 2 số tự nhiên liên tiếp
Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
Gọi ba số nguyên dương liên tiếp lần lượt là n , n+1 , n+2 (\(n\in Z+\))
Ta có : \(n\left(n+1\right)\left(n+2\right)=\left(n^2+n\right)\left(n+2\right)=n^3+2n^2+n^2+2n=n^3+3n^2+2n\)
Mặt khác : \(n^3< n^3+3n^2+2n< n^3+3n^2+3n+1\)
\(\Rightarrow n^3< n^3+3n^2+2n< \left(n+1\right)^3\)(1)
Vì n là số nguyên dương nên từ (1) ta có \(n\left(n+1\right)\left(n+2\right)\) không là lập phương của một số tự nhiên.
Chứng minh rằng nếu tổng các lập phương của 3 số nguyên chia hết cho 9 thì tồn tại 1 trong 3 số đó là bội của 3
có a^3 + b^3 + c^3 chia hết cho 9 (1)
giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )
=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1
do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )
=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )
=> 1 trong 3 số a, b, c, là bội của 3
Bài 1. Chứng minh rằng: a) A = abc + bca + cba không là số chính phương. b) ababab không là số chính phương.
Bài 2. Tìm tất cả các số có bốn chữ số vừa là số chính phương, vừa là lập phương của một số tự nhiên.
Bài 3. Tìm số nguyên tố sao cho + là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.