Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Minh
Xem chi tiết

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 23:12

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2017 lúc 3:35

S = A B C 1 2 A H . B C = 1 2 A B . A C

Þ AH.BC = AB.AC (ĐPCM)

Dr.STONE
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 20:22

BC=10cm

=>AH=4,8cm

Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 11:55

a:

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=144\)

=>AC=12(cm)

b: \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AH\cdot BC=AB\cdot AC\)

Thái Bùi Ngọc
Xem chi tiết
Kuroba Kaito
25 tháng 2 2019 lúc 20:26

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc

nguyễn hoàng an chi
Xem chi tiết
Nhật Hạ
29 tháng 2 2020 lúc 8:59

a, Xét △HAC vuông tại H có: CH2 + AH2 = AC2 (định lý Pytago)

=> (9,6)2 + (7,2)2 = AC2    => 92,16 + 51,84 = AC2   => AC2 = 144   => AC = 12 (cm)

b, Ta có: \(S_{\text{△}ABC}=\frac{AC.AB}{2}\)

Và \(S_{\text{△}ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow\frac{AC.AB}{2}=\frac{AH.BC}{2}\)( = S△ABC)

=> AC . AB = AH . BC (đpcm)

Khách vãng lai đã xóa
Hoàng Thu Trang
Xem chi tiết
Inequalities
12 tháng 2 2020 lúc 15:37

Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:

\(AH^2=BH.CH\)

\(AH.BC=AB.AC\)

Khách vãng lai đã xóa

Lớp 8 chưa học lượng giác mà??

a)  Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H

Áp dụng định lý Pytago cho cả 2 tam giác:

Tam giác AHC: AH^2= AC^2 - CH^2 (1)

TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)

(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2

                        2AH^2 = BC^2 - CH^2 - BH^2

                         2AH^2 = (BH+CH)^2 - CH^2 - BH^2

                          2AH^2 = 2BH.CH

                          AH^2 = BH.CH

b) Xét tam giác AHB và tam giác CAB:

H^ = A^ = 90 độ

B^ chung

2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)

Suy ra AH/CA = HB/AB= AB/BC

Vậy AH.BC = AB.AC

Khách vãng lai đã xóa
Linh
Xem chi tiết