a:
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
=>\(AC^2=144\)
=>AC=12(cm)
b: \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>\(AH\cdot BC=AB\cdot AC\)
a:
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
=>\(AC^2=144\)
=>AC=12(cm)
b: \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>\(AH\cdot BC=AB\cdot AC\)
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
Cho tam giác ABC vuông tại A,( AB< AC) đường cao AH( H€BC ).Trên đoạn thằng HC lấy điểm D sao cho HD =HA.Đường vuông góc BC tại D cắt AC tại E.Gọi M là trung điểm của đoạn thẳng BE.Chứng minh:
a) tam giác DEC đồng dạng với tam giác ABC
b) AB.AC=AH.BC
Tam giác ABC vuông tại A có AB=30cm,BC=50cm, AH là đường cao( H thuộc BC).
a) Tính diện tích DABC .
b) Chứng minh: AH.BC=AB.AC và tính AH
c)Tính diện tích tam giác AHB, diện tích tam giác AHC.
d)Gọi M,N lần lượt là hình chiếu của H trên AB,AC. Gọi I,K lần lượt là trung điểm của HB,HC. Chứng minh: MN vuông góc với MK và tứ giác NMKI là hình thang
e)Tính diện tích hình thang NMKI
Cho tam giác ABC vuông tại A. Đường cao AH. Cho biết AB=15cm,AC=20cm.
a) Chứng minh AH.BC=AB.AC
b) Tính BC,AH
) Từ H kẻ HE vuông góc với AB ở E và HF vuông góc với AC ở F. Chứng minh tam giác AEF đồng dạng với tam giác ACB
Mình đang cần gấp bài này. Mong các bạn giúp mình nhé. Cảm ơn các bạn
Bài 3: Cho tam giác ABC vuông tại A có AC=20cm. Kẻ AH vuông góc với BC. Biết BH=9cm,HC=16cm. Tính độ dài cạnh AB, AH?
Bài 6: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH=2cm,AB=4cm. Tính chu vi tam giác ABC.
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH
a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH
Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .
Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông.
Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng:
a) Tam giác AHB đồng dạng với tam giác CHA .
b) BAC = 90o
Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC
Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng
Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng :
a) BH.BD=BK.BC
b) CH.CE=CK.CB
c) BH.BD+CH.CE=BC2
Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng :
a) AB.AE=AC.HC
b) BC. AK=AC.HC
c) AB.AE+AD.AK=AC2
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông góc với cạnh AB tại D, vẽ hE vuông góc với cạnh AC tại E. Biết AB = 15cm, BC = 25cm.
1)Tính độ dài cạnh AC và diện tích tam giác ABC.
2)Chứng minh tứ giác ADHE là hình chữ nhật.
3)Trên tia đối của AC lấy điểm F sao cho AF = AE. Chứng minh tứ giác AFDH là hình bình hành.
4)Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM vuông góc HK.
Cho tam giác ABC vuông tại A, có AB=9cm, AC=12cm. Kẻ đường cao AH và đường trung tuyến AM.
a. Chứng minh AH.BC=AB.AC
b. Tính BC, AH, BH, CH
c. Tính diện tích tam giác AHM
d. Kẻ HD vuông góc AB, HE vuông góc AC (D thuộc AB, E thuộc AC)
Chứng minh AD.AB=AE.AC
Giúp mk nhé, thanks
Cho tam giác ABC vuông tại A biết AB=6cm, AC=8cm. Kẻ đường cao AH (H thuộc BC).
a. Tính BC.
b. Chứng minh tam giác ABC đồng dạng tam giác HBA
c. Chứng minh AB.AC = AH.BC
d. Từ H kẻ HI vuông góc AB (I thuộc AB) và HK vuông góc AC (K thuộc AC). Chứng minh \(\dfrac{AB^3}{AC^3}=\dfrac{BI}{CK}\)