Cho x+y+z=0,xy+yz+zx=0.CMR:x=y=z
Mọi người giúp tui với
Cho:x+y+z=0;xy+yz+zx=0.Cmr:x=y=z
Ta có : \(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\Leftrightarrow x^2+y^2+z^2=0\) (Vì xy+yz+zx = 0)
Vì \(x^2\ge0;y^2\ge0;z^2\ge0\Rightarrow x^2+y^2+z^2=0\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)
cho (x+y+z) (xy+yz+zx)=xyz .CMR:
x^2017+y^2017+z^2017= (x+y+z)^2017
\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)
Vậy ta đc đpcm
cho:1/x2+1/y2+1/z2=1/xy+1/yz+1/zx;x,y,z khac 0.cmr:x=y=z
1/x^2+1/y^2+1/z^2=1/xy+1/yz+1/zx
2:(1/x^2+1/y^2+1/z^2)=2:(1/xy+1/yz+1/zx)
2x^2+2y^2+2z^2=2xy+2yz+2xz
2x^2+2y^2+2z^2-2xy-2yz-2xz=0
(x^2-2xy+y^2)+(x^2-2xz+z^2)+(y^2-2yz+z^2)=0
(x-y)^2+(x-z)^2+(y-z)^2=0
=> (x-y)^2=0 và (x-z)^2=0 và (y-z)^2=0
=> x-y=0 và x-z=0 và y-z=0
=> x=y và x=z và y=z
=> x=y=z (đpcm)
cho 3 sô x,y,z>0 thảo mãn x+y+z=1
cmr: 3/xy+yz+zx +2/x2 +y2+z2 >=14
mong mọi người giúp đỡ
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
sao ở đâu mà ra dc 2(4/x+y+z)2 +1/(1/3) vậy.
ở trên biết là bóc tách rồi nhưng ở dưới chưa hiểu lắm 2 bạn làm rõ ra 1 chút được không
cho x,y,z>0 và x+y+z=1 chứng minh\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}\sqrt{yz}+\sqrt{zx}\)
Mình mong mọi người giúp đỡ mình ạ
Đề bài phân tích đa thức thành nhân tử
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
b) xy( x - y ) - yz(y - z) - zx(x - z)
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) Vô câu hỏi tương tự
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) tương tự
chuyên đề ; Số cp
cho x,y,z thuộc Q t/m: x^2+y^2+z^2=2*(xy+yz+zx)
chứng minh:xy là bình phương của 1 số hữu tỉ (biết xy+yz+zx là bình phương của 1 số hữu tỉ) giúp mình với mọi người
Cho x, y, z là các số \(\neq\) 0 thỏa mãn: \(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\).
Tính P = \(\dfrac{xy+yz+zx}{x^2+y^2+z^2}\)
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)