Tìm các số nguyên x,y thỏa mãn
(x-2019)\(^{2020}\)+\(\left(x-2020\right)^{2020}=2020^{y-2021}\)
TÌM các số nguyên x,y thỏa mãn:
\(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=2020^{y-2021}\)
Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ
\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x
Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)
\(\Rightarrow y\ge2021\)
Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn
\(\Rightarrow y=2021\)
Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)
Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho
- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm
- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)
Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)
\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm
Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)
tìm x,y nguyên biết (x-2019)2000+(x+2020)^2020=2020^y-2021
Tìm các nguyên x,y thỏa mãn:
\(25-y^2=2020.\left(x-2019\right)^2\)
Ta có vế phải không âm nên vế trái không âm tức là \(y^2\le25\Leftrightarrow-5\le y\le5\)
Mặt khác thì vế phải chia hết cho 5 nên vế trái chia hết cho 5,suy ra y={-5;0;5}
+)Với y=-5 =>2020(x-2019)2=0=>x=2019
+)Với y=0=> 2020(x-2019)2=25,trường hợp này không tìm được x
+)Với y=-5 thì 2020(x-2019)2=0=>x=2019
Vậy giá trị thỏa mãn của (x;y) là (2019;5);(2019;-5)
sao ko xét th 2,4 VP cũng chia hết cho 2,4 mà
Vì \(2020\times\left(x-2019\right)^2⋮2\) mà \(25\)lẻ \(\Rightarrow\)y\(^2\)lẻ.
\(\Rightarrow\)y lẻ. (1)
Vì \(2020\times\left(x-2019\right)^2\ge0\)
\(\Rightarrow\)y\(\le5\)(2). (Vì y\(^2\)luôn\(\ge\)0)
Từ (1) và (2) \(\Rightarrow\)y\(\in\left\{1;3;5\right\}\)
Nếu y=1:
\(25-y^2=2020\left(x-2019\right)^2\)
\(\Rightarrow25-1^2=24=2020\left(x-2019\right)^2\)
Mà \(x\inℤ\Rightarrow x\in\varnothing\)(loại)
TH2: \(y=3\) .Tương tự \(\Rightarrow\)loại
TH3:\(y=5...\Rightarrow x=2019\)
Vậy \(x=2019,y=5\)
tìm các số thực x,y thỏa mãn 2019.|x-1|+2020.|y-2|+2021.|y-3|+2022.|y-4|=4042
\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)
\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
Hom nay mik chi dang dc de bai hinh thoi nha,may ban thong cam
1
Cho đường tròn ( O;r ) nội tiếp tam giác ABC tiếp xúc với BC tại D.Vẽ đường kính DE;AE cắt BC tại M.Chứng minh rằng BD=CM
2
Tìm tất cả các số nguyên a,b thỏa mãn \(a^2-1⋮ab+1\)
3
Cho x,y là các số thực thỏa mãn \(x^{2020}+y^{2020}>x^{2019}+t^{2019}\)
Chứng minh \(x^{2021}+y^{2021}>x^{2020}+y^{2020}\)
gọi các điểm như trên hình
I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK
C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC
(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC
CM tương tự ta được OJ2 = EH.BD
mà \(\text{OK=OJ=r}\)
=>\(\text{IE.DC=EH.BD}\)
=>\(\frac{EH}{EI}=\frac{CD}{BD}\)
Ta có : \(\text{HI // BC}\)
=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)
=> \(\frac{BM}{MC}=\frac{EH}{EI}\)
=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)
=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Bạn hãy dựa vào link này mà tự làm nhé :
https://olm.vn/hoi-dap/detail/246211413079.html
Bài làm của mình đó !
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Tìm các cặp số nguyên x, y thỏa mãn phương trình |x| + 2019|y − 2020| = 1
Bạn tham khảo hình ảnh :
Cre : lazi.vn
Hok tốt
bạn tham khảo:
nguồn: lazi.vn
~HT~
Ta có |x| + 2019|y - 2020| = 1
=> |x| \(\le\)1
mà |x| \(\ge0\forall x\)
=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)
Thay x = 0 vào |x| + 2019|y - 2020| = 1
=> 0 + 2019|y - 2020| = 1
<=> \(\left|y-2020\right|=\frac{1}{2019}\)
=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại)
Thay x = 1 vào phương trình
=> 2019|y - 2020| = 0
<=> |y - 2020| = 0
<=> y - 2020 = 0
<=> y = 2020
Khi x = -1 => 2019|y - 2020| = 0
<=> |y - 2020| = 0
=> y - 2020 = 0
=> y = 2020
Vậy cặp (x;y) thỏa là (1;2020) ; (-1;2020)
tìm các số nguyên x,y thỏa mãn( x+3)2020+(y-2)2020=0
Do \(\left(x+3\right)^{2020}\ge0\) và \(\left(y-2\right)^{2020}\ge0\) với mọi \(x,y\)
Để \(\left(x+3\right)^{2020}+\left(y-2\right)^{2020}=0\) thì \(x+3=0\) và \(y-2=0\)
Vậy \(x=-3,y=2\)