Giúp mình với ạ
Tìm giá trị nhỏ nhất của biểu thức: M= |3x-2| +3.|x-2|
Giải giúp mình với ạ
Tìm giá trị nhỏ nhất của biểu thức
x^2+7x-2021
=x^2+7x+49/4-8133/4
=(x+7/2)^2-8133/4>=-8133/4
Dấu = xảy ra khi x=-7/2
\(x^2+7x-2021\\ =x^2+7x+12,25-2033,25\\ =\left(x+3,5\right)^2-2033,5\\ =-2033,5+\left(x+3,5\right)^2\)
\(Vì\) \(\left(x+3,5\right)^2\ge0\)
Nên GTNN của biểu thức là \(-2033,5\) khi \(x+3,5=0\Leftrightarrow x=-3,5\)
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
Giúp mình với!
1. Tìm giá trị nhỏ nhất của biểu thức: 3x2-5x+4
2. Tìm giá trị lớn nhất của biểu thức:
a.x-x2+1
b.4x-3x2+2
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
Cho đa thức: P(x) = x4 + 3x2 + 3. Tìm giá trị nhỏ nhất của biểu thức
giúp mình với !!!!
ta có x4+3x2 \(\ge\)0
=>\(x^4+3x^2+3\ge3\)
vậy giá trị nhỏ nhất của biểu thức =3
\(P\left(x\right)=x^4+3x^2+3=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)
nhận thấy \(x^2+\frac{3}{4}\ge\frac{3}{4}\) suy ra \(\left(x^2+\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Suy ra \(P\left(x\right)\ge\frac{9}{4}+\frac{3}{4}=\frac{12}{4}=3\)
Vậy Min = 3 <=> x = 0
Ta có :
\(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+3\ge3\forall x\)
Dấu " = " \(\Leftrightarrow\hept{\begin{cases}x^4=0\\3x^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=0\end{cases}\Leftrightarrow x=0}\)
Vậy \(GTNN\)của \(P\left(x\right)\)là 3 \(\Leftrightarrow x=0\)
Chúc bạn học tốt !!!!
Cho -1 < x < 1. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{\left(3x-5\right)^2}{1-x^2}\).
*Giúp mình nhanh với*
Mn giúp em với ạ
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=8a-8a2+3
\(A=-2\left(4a^2-4a+1\right)+5=5-2\left(2a-1\right)^2\le5\)
\(A_{max}=5\) khi \(a=\dfrac{1}{2}\)
a) Ta có: \(A=-8a^2+8a+3\)
\(=-8\left(a^2-a-\dfrac{3}{8}\right)\)
\(=-8\left(a^2-2\cdot a\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=-8\left(a-\dfrac{1}{2}\right)^2+5\le5\forall a\)
Dấu '=' xảy ra khi \(a=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức : A= ( 3x^2 + 8x + 6 ) /( x^2 +2x + 1 )
Giúp mình với ạ. Mình đang cần gấp
\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)
\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)
\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)
\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)
Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Gọi k là một giá trị của A ta có:
\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)
\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)
\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)
Ta cần tìm k để PT (*) có nghiệm
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)
Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)
Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)
Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1
1,tìm giá trị nhỏ nhất của biểu thức
a,3,7+|4,3-x|
b,B=|3x+8,4|-14,2
2,tìm giá trị lớn nhất của biểu thức
a,D=5,5-|2x-1,5|
b,E=-|10,2-3x|-14
(nhanh giúp mình với mai mình học rồi)