Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Khánh
Xem chi tiết
HT.Phong (9A5)
12 tháng 3 2023 lúc 19:17

a) \(3\left(2x-x\right)=5x+1\)

\(\Leftrightarrow6x-3x=5x+1\)

\(\Leftrightarrow6x-3x-5x=1\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)

b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)

\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)

\(\Leftrightarrow x+2022=0\)

\(\Leftrightarrow x=-2022\)

 

乇尺尺のレ
12 tháng 3 2023 lúc 19:27

a)3(2x-3)=5x+1

⇔6x-9=5x+1

⇔6x-5x=1+9

⇔x=10

vậy phương trình có nghiệm là S={10}

b)\(\dfrac{x+1}{2021}\)+\(\dfrac{x+2}{2020}\)+\(\dfrac{x+3}{2019}\)+\(\dfrac{x+2028}{2}\)=0

⇔2020(x+1)+2021(x+2)+2041210(x+2028)=0

⇔2045251x+4139579942=0

⇔2045251x=-4139579942=0

⇔x=-\(\dfrac{4139579942}{2045251}\)

vậy phương trình có tập nghiệm là S={\(-\dfrac{4139579942}{2045251}\)}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2019 lúc 11:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2017 lúc 15:13

Nguyễn Dương
Xem chi tiết
#Biinz_Tổng
Xem chi tiết
Tomoe
19 tháng 2 2020 lúc 15:18

a, x^2 - x - 20 = 0

=> x^2 - 5x + 4x - 20 = 0

=> x(x - 5) + 4(x - 5) = 0

=> (x + 4)(x - 5) = 0

=> x + 4 = 0 hoặc x - 5 = 0

=> x = -4 hoặc x = 5

b, x^3 - 6x^2 + 12x + 19 = 0

=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0

=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0

=> (x^2 - 7x + 19)(x + 1) = 0

x^2 - 7x + 19 > 0

=> x + 1 = 0

=> x = -1

Khách vãng lai đã xóa
Bùi Anh Tuấn
19 tháng 2 2020 lúc 15:23

\(a,x^2-x-20=0\)

\(x^2-5x+4x-20=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)

\(b,x^3-6x^2+12x+19=0\)

\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\left(x+1\right)\left(x^2-7x+19\right)=0\)

Vì \(\left(x^2-7x+19\right)>0\forall x\)

\(x+1=0\)

\(x=-1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
19 tháng 2 2020 lúc 15:24

\(x^2-x-20=0\)

\(\Leftrightarrow x^2-5x+4x-20=0\)

\(\Leftrightarrow x\left(x-5\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2018 lúc 5:28

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2018 lúc 12:17

Chien Binh Anh Duong
Xem chi tiết
phạm việt trường
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 21:19

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)