cho x>0,y>0 và x+y=2a
tìm GTNN của A = 1/x+1/y
Giải giúp mig ạ
Tìm GTNN của biểu thức A=1/(1+x)+1/(1+y)+1/(1+z) biết x,y,z>=0 và x+y+z<=3
Áp dụng BĐT cô-si, ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)
\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)
Ta có:
\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)
\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)
\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)
cho x > 0, y >0 và x+y <=4:3 . tìm gtnn của biểu thức : S = x+y +3:4x+3:4y
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6. tìm GTNN của biểu thức P= 5x+3y+12/x+16/y
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
làm bừa thui,ai tích mình mình tích lại
số dư lớn nhất bé hơn 175 là 174
số nhỏ nhất có 4 chữ số là 1000
Mà 1000:175=5( dư 125)
số đó là:
cho x>0, y>0 và x+y lớn hơn hoặc bằng 6.
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
cho x và y là hai số thỏa mãn : x ≥ 0, y ≥ 0, 2x + 3y ≤ 6 và 2x + y ≤ 4
tìm GTNN và GTLN của biểu thức K=x2 - 2x - y
Cho x,y ≥0 và x+y=1. Tìm GTLN của:
A= \(\frac{x}{y+1}+\frac{y}{x+1}\)
\(A=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+x+y}=\frac{2}{3}\)
\(\Rightarrow A_{min}=\frac{2}{3}\) khi \(x=y=\frac{1}{2}\)
Cho x; y > 0 và xy = 3. Tìm GTNN của \(K=\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)
Áp dụng BĐT cô si cho:
!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)
!!) Tương tự ta có:
\(3x+y\ge2\sqrt{3xy}\ge6\)
Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)
Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3
1,cho số nguyên tố p(p>3) và 2 sô nguyên dương a,b sao cho p^2 + a^2=b^2. chứng minh a chia hết cho 12 và 2(p+a+1) là số chính phương
2, cho x,y,z >=0 thỏa mãn x^2+y^2+z^2=1. tìm GTLN và GTNN của biểu thức: T= x/(1-yz) + y/(1-zx) + z/(1-xy)
giúp mình với ạ!!
cần gấp
cái này mik chịu, mik mới có lớp 7
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
2, \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)
Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)
=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)
Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)
=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)
Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)
Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)
=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)
Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Cho hai số thực x và y thỏa mãn y-x=1 tìm gtnn của A=x^2+y^2
\(y-x=1\Rightarrow x=y-1\)
\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)
\(=y^2-2y+1+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{2}\right)\)
\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)
Vì \(y-x=1\)nên
\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)
Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)
Cho \(x,y>0\) và \(x^2+y^2=1\).Tìm GTNN của:
\(P=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)