Cho \(T=3+3^2+3^3+......+3^{99}\)
a, Tìm n thuộc N biết \(2T+3=3^{2n}\)
b,CMR \(4A+25\)là 1 lũy thừa của 5
Với \(A=5^2+5^3+....+5^{2012}\)
c,Cho \(C=1+4+4^2+......+4^{100}\)và \(B=4^{101}\)
CMR \(C< \frac{B}{3}\)
Cho \(T=3+3^2+3^3+.....+3^{99}\)
a, Tìm n thuộc N biết \(2T+3=3^{2n}\)
b,CMR 4A +25 là 1 lũy thừa của 5
với \(A=5^2+5^3+....+5^{2012}\)
c,Cho \(C=1+4+4^2+......+4^{100}\)và \(B=4^{101}\)
CMR \(C< \frac{B}{3}\)
\(T=3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3T=3^2+3^3+3^4+.....+3^{100}\)
\(\Rightarrow3T-T=3^{100}-3\)
\(\Rightarrow2T=3^{100}-3\)
\(\Rightarrow2T+3=3^{100}\)
Mà đầu bài cho \(2T+3=3^{2n}\)
Nên 2n = 100
=> n = 10
Bài1:
1-2+3+4-5-6+7+8-9-.......+2007+2008-2009-2010
Bài 2:
Cho a,b thuộc N*. CMR: a,b là 2 số NTCN thì 7a+5b và 4a+3b cũng là hai số NTCN
Bài 3: Cho S= 1/(5^2) - 2/(5^3) + 3/(5^4) - 4/(5^5) + 99/(5^100) - 100/(5^101)
CMR: S< 1/36
1/Cho A=4^0+4^1+4^2+4^3+4^4+...+4^98
a/A có chia hết cho 5?tại sao?
b/tìm X thuộc N sao cho3xA+1=2^X
c/so sánh 3xa+1 với B=3^2^100
2/
a/so sánh 127^23 và513^18
b/so sánh 3^23 và 5^16
3/CMR A chia hết cho 4 biết A=3^0+3^1+3^2+3^3+3^4+...+3^1991
4/CMR (36^20-9^10) chia hết cho 405
5/cho S=5+5^2+5^3+5^4+...+5^2013 CMR 4xS+5 là số chính phương
6/tìm n thuộc N sao để 2^n-1 nà 2^n+1 đồng thời là hai số nguyên tố
7/tìm n thuộc N sao để 2^n-1 nà 2^n+1 không đồng thời là hai số nguyên tố
8/tìm chữ số X và số tự nnhieen X sao cho (12+3xX)^2=1a96
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Đề thi học sinh giỏi toán lớp 6
Bài 1: a, Cho A=12n+1/2n+3. Tìm số nguyên n để A thuộc Z.
b, Tính P= -1/20 +(-1)/30 + (-1)/42 + (-1)/56 + (-1)/72 + (-1)/90
Bài 2: a, So sánh P và Q biết P= 2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013
b, Tìm x thuộc Z biết: (7x-11)^3=2^5.5^2+200
Bài 3: a, Tìm các chữ số a, b, c khác 0 thoả mãn abbc=ab.ac.7
b, Tìm các số tự nhiên x, y biết x-4/y-3=4/3 và x-y=4
c, Tìm các số nguyên tố P để 2^P+P^2 là số nguyên tố.
Bài 4: Rút gọn: A=(1 - 1/5)(1 - 2/5)............(1 - 9/5)
B= (1 - 1/2)(1 - 1/3)............(1 - 1/50)
C=2^2/1.3 . 3^2/2.4 . 4^2/3.5 . 5^2/4.6 . 6^2/5.7
Bài 5: a, Tìm các chữ số a, b thoả mãn ab4 chia 4ab bằng 3/4
b, CMR: M=1/2^2 + 1/3^2 + 1/4^2 +..........................+1/100^2<1
c, CMR: 1/26 + 1/27 +........................+1/50=1 - 1/2 + 1/3 - 1/4 + 1/5-........................+ 1/49 -1/50
Cho A= 1-3+3^2-3^3+...-3^2003+3^2004
a, CMR 4A-1 là lũy thừa của 3
b, CMR A là lũ thừa của 2 vs A= 4+2^3+2^4+2^5+...+2^2003+2^2004
Giải giúp mình nha...~~~!!!!!
1. Tìm số nguyên n để : a. n + 5 chia hết cho n - 1 b. 2n - 4 chia hết cho n + 2 c. 6n + 4 chia hết cho 2n + 1 d. 3 - 2n chia hết cho n + 1
2. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn 3 điều kiện sau : a. c là chữ số có tận cùng của số M = 5+ 5^2 + 5^3 + ...+ 5^101 b. abcd chia hết cho 25 c. ab = a + b^2
3. Tìm x,y thuộc Z biết : a. xy + 3x - 7y = 21 b. xy + 3x - 2y = 11
a)Ta có:
\(\left(n+5\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1+6\right)⋮\left(n-1\right)\)
\(\Rightarrow6⋮\left(n-1\right)\)
Ta có bảng sau:
\(n-1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -5 | -2 | -1 | 0 | 2 | 3 | 4 | 7 |
TM | TM | TM | TM | TM | TM | TM | TM |
b)\(\left(2n-4\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(2n+4-8\right)⋮\left(n+2\right)\)
\(\Rightarrow8⋮\left(n+2\right)\)
Ta có bảng sau:
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
TM | TM | TM | TM | TM | TM | TM | TM |
c)Ta có:
\(\left(6n+4\right)⋮\left(2n+1\right)\)
\(\Rightarrow\left(6n+3+1\right)⋮\left(2n+1\right)\)
\(\Rightarrow1⋮\left(2n+1\right)\)
Ta có bảng sau:
2n+1 | -1 | 1 |
2n | -2 | 0 |
n | -1 | 0 |
d)Ta có:
\(\left(3-2n\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(-2n-2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\)
Ta có bảng sau:
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
Ta có:
\(M=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow M=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)+5^{101}\)
\(\Rightarrow M=30+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)+5^{101}\)
\(\Rightarrow M=30+6.5^3+...+6.5^{99}+5^{101}\) có tận cùng bằng 5
⇒c=5
Mà \(\overline{abcd}⋮25\Rightarrow\overline{cd}⋮25\Rightarrow\overline{5d}⋮25\Rightarrow d=0\)
Lại có:
\(\overline{ab}=a+b^2\Rightarrow10a+b=a+b^2\)
\(\Rightarrow10a-a=b^2-b\Rightarrow9a=b\left(b-1\right)\)
\(\Rightarrow b\left(b-1\right)⋮9\)
\(\Rightarrow\left[{}\begin{matrix}b⋮9\\\left(b-1\right)⋮9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=9\\\varnothing\end{matrix}\right.\)
\(\Rightarrow9a=9.8=72\Rightarrow a=8\)
Vậy \(\overline{abcd}=8950\)
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
1. Cho A = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
Tìm số tự nhiên n biết 2A + 3 = 3 mũ n
2. Chứng minh rằng A là một lũy thừa của 2 với:
A = 4+ 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 20
3. Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
Ai tk mk mk tk lại ai nhanh nhất nhé
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2