Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Han The Anh
6 tháng 12 2017 lúc 14:57

nham mot ti x=5/2

Đào Trí Bình
Xem chi tiết
Đào Trí Bình
1 tháng 9 2023 lúc 17:10

help me!

cứu tui zới!

Hồ Văn Đạt
1 tháng 9 2023 lúc 17:30

tách ra đk

Đào Trí Bình
1 tháng 9 2023 lúc 17:38

tách kiểu gì

Kiên-Messi-8A-Boy2k6
Xem chi tiết
tth_new
5 tháng 10 2018 lúc 16:43

ĐK: \(a\inℕ\)

Giả sử \(\sqrt{a}=\frac{m}{n}\)  \(\left(UCLN\left(m,n\right)=1\right)\)

Khi đó \(a^2=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)

Do a là số tự nhiên nên a2 là số tự nhiên nên \(m^2⋮n^2\)suy ra  \(m⋮n\)  hay \(UCLN\left(m,n\right)=n\) trái với giả sử \(UCLN\left(m,n\right)=1\)

\(\Rightarrow\) a là số vô tỉ

Hoặc cách khác:

ĐK: a không phải là số chính phương

Suy ra \(a^2\) là số chính phương. Và:\(\sqrt{a^2}=a\) (là một số tự nhiên)

Mặt khác: \(\sqrt{a}\ne a\)

Do vậy \(\sqrt{a}\) là số vô tỉ

Yuki
Xem chi tiết
Nguyên
30 tháng 10 2015 lúc 20:46

Giả sử nếu a không phải là số chính phương thì\(\sqrt{a}\) là số hữu tỉ

\(\Rightarrow\sqrt{a}=\frac{m}{n}\)          \(\left(m;n\right)=1\)

Do a không phải là số chính phương nên\(\frac{m}{n}\notin N\)

\(\Rightarrow n>1\)

\(\Rightarrow m^2=n^2.a\)

gọi P là ước nguyên tố nào đó của n

\(m^2\)chia hết cho a ; \(n^2\)chia hết cho a (trái với điều kiện ở trên là m và n nguyên tố cùng nhau)

Vậy nếu a không phải là số chính phương thì\(\sqrt{a}\) là số vô tỉ 

Uchiha Sasuke
Xem chi tiết
Phantom Sage
25 tháng 8 2016 lúc 16:56

Giả sử \(\sqrt{a}\)là 1 số hữu tỉ thì \(\sqrt{a}=\frac{m}{n}\)( với m , n = 1 )

Khi đó \(a^2=\frac{m^2}{n^2}\)

Vì a là số tự nhiên nên mchia hết cho n2

hay m chia hết cho n ( ngược với đk m,n = 1 )

=> ĐPCM

Gukmin
6 tháng 3 2020 lúc 18:12

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

Khách vãng lai đã xóa
Huỳnh Hướng Ân
Xem chi tiết
o0o I am a studious pers...
11 tháng 8 2016 lúc 20:47

Ta có : \(\sqrt{a^2}=a\)

\(\Rightarrow\sqrt{a}\ne a\)

\(\sqrt{a}\)vô tỉ

Gukmin
6 tháng 3 2020 lúc 18:12

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Trần Ngọc Bích Vân
8 tháng 6 2017 lúc 9:31

Giả sử \(\sqrt{a}\) là số hữu tỉ thì nó viết được dưới dạng:

\(\sqrt{a}\) = \(\dfrac{m}{n}\) với m,n \(\in\)N, (m,n) = 1

Do a không là số chính phương nên \(\dfrac{m}{n}\) không là số tự nhiên , do đó n > 1

Ta có:

m2= a.n2.

Gọi p là ước nguyên tố nào đó của n , thì m2\(⋮\) p , do đó m \(⋮\) p . Như vậy p là ước nguyên tố của m và n, trái với (m,n)=1

Vậy \(\sqrt{a}\) phải là số vô tỉ

Chitanda Eru (Khối kiến...
8 tháng 9 2018 lúc 20:39

Giả sử \(\sqrt{a}\) là số hữu tỉ .

Đặt \(\sqrt{a}=\dfrac{x}{y}\) [\(x;y\in N\),\(y\ne0\)\(\left(x;y\right)=1\)]

\(\Rightarrow a=\dfrac{x^2}{y^2}\Rightarrow a\cdot y^2=x^2\)

Vì x2 là 1 số chính phương nên a.y2 viết được dưới dạng tích của các số với lũy thừa bằng 2

Mà x; y nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)

=> Giả thiết này sai

=>\(\sqrt{a}\) là 1 số vô tỉ

Ngô Tuấn Vũ
Xem chi tiết
Trần Thị Loan
30 tháng 10 2015 lúc 17:21

Giả sử \(\sqrt{a}\) là số hữu tỉ .

Đặt \(\sqrt{a}=\frac{p}{q}\) (p; q \(\in\) N; q khác 0 và (p;q) = 1)

=> \(a=\frac{p^2}{q^2}\) => a.q2 = p2

Vì plà số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2

Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)

=> Điều giả sử sai

Vậy \(\sqrt{a}\) là số vô tỉ

Sakuraba Laura
12 tháng 1 2019 lúc 21:33

Giả sử √a không là số vô tỉ => √a là số hữu tỉ

Đặt \(\sqrt{a}=\frac{m}{n}\) (m, n ∈ N), (m, n) = 1

(Vì a không là SCP => n > 1)

\(\Rightarrow a=\frac{m^2}{n^2}\Rightarrow m^2=an^2\) (*)

Gọi p là ước nguyên tố nào đó của n.

Kết hợp với (*) => m2 ⋮ p => m ⋮ p (vì p là số nguyên tố)

Có m và n ⋮ p. Điều này trái với (m, n) = 1

=> Điều giả sử là sai.

Vậy √a với a là STN không chính phương là 1 số vô tỉ.

                              

Lê khắc Tuấn Minh
Xem chi tiết
ACEquocanh2211
28 tháng 11 2020 lúc 20:32

Giả sử \(\sqrt{a}\)là số hữu tỉ

Đặt \(\sqrt{a}=\frac{y}{x}\)

Khách vãng lai đã xóa