cho a+b+c=5,a,b,c>=0
tim min cua p= √(a+1)+√(2b+1)+√(3c+1)
cho a+b+c=5 a,b,c>0
tìm Min
P= căn(a+1) + căn(2b+1) + căn(3c+1)
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
cho a, b, c là các số lớn hơn 1.
Tìm Min P=\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(P=\frac{a^2-1+1}{a-1}+\frac{2\left(b^2-1+1\right)}{b-1}+\frac{3\left(c^2-1+1\right)}{c-1}\)
\(P=a-1+2+\frac{1}{a-1}+2\left(b-1\right)+4+\frac{2}{b-1}+3\left(c-1\right)+6+\frac{3}{c-1}\)
=>\(P=a-1+\frac{1}{a-1}+2\left(b-1\right)+\frac{2}{b-1}+3\left(c-1\right)+\frac{3}{c-1}+12\)
ap dung bdt co si ta co
xay ra dau = khi va chi khi a=b=c=2
Cho a,b,c >0 và a+2b+3c=18
Chứng minh \(\frac{2b+3c+5}{1+a}+\frac{3c+a+5}{1+2b}+\frac{a+2b+5}{1+3c}\ge\frac{51}{7}\)
cho a,,c là các số lớn hơn 1 . tìm min của bt \(A=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
a,b,c >1
tìm min P=\(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\)
Áp dụng bất đẳng thức cô si cho hai số thực không âm ta có :
\(\dfrac{a^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\dfrac{a^2}{a-1}\times4\left(a-1\right)}=4a\) (1)
\(\dfrac{2b^2}{b-1}+8\left(b-1\right)\ge2\sqrt{\dfrac{2b^2}{b-1}\times8\left(b-1\right)}=8b\) (2)
\(\dfrac{3c^2}{c-1}+12\left(c-1\right)\ge2\sqrt{\dfrac{3c^2}{c-1}\times12\left(c-1\right)}=12c\) (3)
Cộng (1),(2) và (3) vế theo vế ta được :\(P+4a+8b+12c-24\)\(\ge4a+8b+12c\)
\(\Leftrightarrow P\ge24\)
Dấu "=" xảy ra khi :a=b=c=2
Vậy giá trị nhỏ nhất của P=\(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\) là 24 khi a=b=c=2
P=\(\dfrac{a^2-1+1}{a-1}+\dfrac{2b^2-2+2}{b-1}+\dfrac{3c^2-3+3}{c-1}\)
=\(\left(a+1+\dfrac{1}{a-1}\right)+\left(2\left(b+1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c+1\right)+\dfrac{3}{c-1}\right)\)
=\(\left(a-1+\dfrac{1}{a-1}\right)+\left(2\left(b-1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c-1\right)+\dfrac{3}{c-1}\right)+12\)áp dụng cosi là đc
Cho số thực dương a,b,c thỏa mãn a+b+c=2016.
Tìm min biểu thức P = \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Cho a;b;c>1
Tìm Min của biểu thức :
P=\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)