Tinh
1/2 +1/4+1/8+1/16+......+1/128
X*[1/2+1/4+1/8+1/16+1/32+1/64+1/128]=127/128
X x (1/2+1/4+1/8+1/16+1/32+1/64+1/128) = 127/128
X x 127/128 = 127/128
X = 127/128 : 127/128
X = 1
tính nhanh p/s 1+ 5/4 + 5/8 + 5/16 + 5/32 + 5/64
b) 1/3 +1/9 + 1/27 + 1/81 +...........+ 1/59049
c) 3/2 + 3/8 + 3/32 +3/128 + 3/512
d) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 giúp mình với
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
C=3/2+3/4+3/8+3/16+...+3/128
D=1/2+1/4+1/8+...+1/1024
E=5/2+5/8+5/32+5/128+5/512+5/2048
1+1
2+2
4+4
8+8
16+16
32+32
64+64
128+128
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
tk m nhé
1/2+1/4+1/8+1/16+.................+1/128=?
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+......+\frac{1}{128}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+........+\frac{1}{64}\)
Lấy 2A-A ta có:
2A-A=\(\left(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)\)
\(\Rightarrow A=1-\frac{1}{128}\)
\(\Rightarrow A=\frac{127}{128}\)
1/2+1/4+1/8+1/16+....+1/128
1/2+1/4+1/8+1/16+....+1/128
=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+...+1/64-1/128
=1-1/128
=127/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 +...+1/64 - 1/128 = 1 - 1/128 = 127/128
1+1=?
2+2=?
4+4=?
8+8=?
16+16=?
32+32=?
64+64=?
128+128=?
1+1=2
2+2=4
4+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
1+1=2
2+2=44+4=8
8+8=16
16+16=32
32+32=64
64+64=128
128+128=256
1/2+1/4+1/8+1/16...+1/128+1/256=
C = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
C= \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
2C = \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
2C-C = \(1-\dfrac{1}{128}\)
C= \(\dfrac{127}{128}\)
E = 1/2 + 1/4 + 1/8 + 1/16 + ...... + 1/128 + 1/256
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^2}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{1}{2^7}\)
E= 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256
2E = 2 ( 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256 )
= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> E = 2E - E
= (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 )
= 1 - 1/256
= 255/256
k nhá, thanks
\(E=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(E=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(E=1-\frac{1}{2^8}\)
\(E=1-\frac{1}{256}\)
\(E=\frac{255}{256}\)