A=\(\frac{1}{10}\)+\(\frac{1}{15}\)+\(\frac{1}{21}\)+...+\(\frac{1}{120}\)
Tinh A biet : A=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}.\)
B=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
nha m.n
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{120}\)
\(B=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{240}\right)\)
\(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+......+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
Tính nhanh
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Ta có:
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2.\frac{3}{16}=\frac{3}{8}\)
Tìm A biết :
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+........+\frac{1}{120}\)= A
Giúp mik nhanh nha
A = 1/10 + 1/15 + 1/21 + ... + 1/120
A = 2/20 + 2/30 + 2/42 + ... + 2/240
A = 2 × (1/4×5 + 1/5×6 + 1/6×7 + ... + 1/15×16)
A = 2 × (1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/15 - 1/16)
A = 2 × (1/4 - 1/16)
A = 2 × (4/16 - 1/16)
A = 2 × 3/16
A = 3/8
tìm x
\(a,\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
tính:
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.........+\frac{1}{120}\)
Tính nhanh: N = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Có: \(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(=>N=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=>N=\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+...+\frac{2}{15\cdot16}\)
\(=>N=\left(\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+...+\frac{2}{15}-\frac{2}{16}\right)\)
\(=>N=\frac{2}{4}-\frac{2}{16}\)
\(=>N=\frac{1}{2}-\frac{1}{8}\)
\(=>N=\frac{8-2}{16}=\frac{6}{16}=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Ta có :
\(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(N=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(N=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(N=\frac{1}{2}-\frac{1}{8}\)
\(N=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Chúc bạn học tốt ~
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{420}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{20.21}\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{21}\right)\)
\(=2\times\frac{17}{84}\)
\(=\frac{17}{72}\)
a, A =\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
b, B=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
Tính giá trị của A và B
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)=2\cdot\frac{3}{16}=\frac{3}{8}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{25\cdot28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)