Tìm n để n+5 và n + 3 đều là đó chính phương
Tìm n thuộc N để:
n+5 và n+30 đều là số chính phương
=> n+5 và n+30 là 2 số chình phương liền nhau:
Ta có: a2-b2= 25
=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:
=>(b+1-b)(b+1+b )=25
=>2b=24 => b=12; => a=13
=> a2=169; b2=144
=>n= 144-5=169-30=139;
CHÚC BẠN HỌC TỐT..........
Với n+5 và n+30 là số chính phương
\(\left\{{}\begin{matrix}n+5=a^2\\n+30=b^2\end{matrix}\right.\) \(\Rightarrow n+5-n-30=a^2-b^2=\left(a-b\right)\left(a+b\right)=-25\)
Mà -25=-5.5=-1.25=-25.1
Giờ bn lập bảng các gt của a và b là đc
tìm n ( n là số tự nhiên ) để :
n+5 và n+30 đều là 2 số chính phương
giả sử :
\(\hept{\begin{cases}a^2=n+5\\b^2=n+30\end{cases}\Rightarrow b^2-a^2=25}\) mà rõ ràng a,b là hai số tự nhiên và a<b
nên ta có : \(\left(b-a\right)\left(b+a\right)=5^2\Rightarrow\hept{\begin{cases}b-a=1\\b+a=25\end{cases}\Rightarrow\hept{\begin{cases}a=12\\b=13\end{cases}\Rightarrow}n=139}\)
Tìm n ϵ N để
n + 3 và n + 120 đều là số chính phương
Do n + 3 và n + 120 đều là số chính phương nên
\(\begin{cases}n+3=a^2\\n+120=b^2\end{cases}\) \(\left(a;b\in N;a>1;b>11\right)\)
=> (n + 120) - (n + 3) = a2 - b2
=> a2 - b2 = n + 120 - n - 3
=> (a - b).(a + b) = 117
=> a - b và a + b cùng lẻ mà a - b < a + b; a + b > 12
=> \(\begin{cases}a-b=1\\a+b=117\end{cases}\) hoặc \(\begin{cases}a-b=3\\a+b=39\end{cases}\) hoặc \(\begin{cases}a-b=9\\a+b=13\end{cases}\)
Các cặp giá trị (a;b) tương ứng là: (58;59) ; (18;21) ; (2;11)
Các giá trị n tương ứng là: 3361; 321; 1
Vậy \(n\in\left\{3361;321;1\right\}\)
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
1.Tìm n∈N sao cho n+2 và n+7 đều là số chính phương
2.Tìm n∈N sao cho 4n+5 và 9n+16 đều là số chính phương
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Tìm số nguyên n để n + 1867 và n + 2015 đều là số chính phương
Bài1: Tìm n€N để các số sau là số chính phương:
a) A=2n+1 và B= 3n+1. Đều là số chính phương( n có 2 chữ số ).
Bài 2:CMR: Các số sau không phải là số chính phương:
a)5+5^2+5^3+...5^2016
b) abab( abcd có gạch ngang trên đầu)
c) abcabc( abcabc có gạch ngang trên đầu)