x+xy+y=1
y+yz+z=4
z+zx+x=9
Tìm x; y;z
cho \(x\ge1;y\ge1;z\ge1\) thỏa mãn xy+yz+zx = 9
tìm GTNN và GTLN của P = \(x^2+y^2+z^2\)
cảm ơn trc
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
11. xyz - xy - yz - zx + x + y + z - 1
12. xy(x + y) + yz(y + z) + zx(z + x) + 2xyz
13. xy(x + y) + yz(y + z) + zx(z + x) + 3xyz
giúp mik vs mik đang cần gấp =(((
13:
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Tìm các số x , y, z thỏa mãn đồng thời 2x=3y=4z và xy+yz+zx = 6
2x=3y=4z =k
suy ra x=k/2; y=k/3, z=k/4
mà xy + yz + zx = 6
suy ra \(\frac{k^2}{6}+\frac{k^2}{12}+\frac{k^2}{8}=6\Rightarrow k^2.\frac{3}{8}=6\Rightarrow k^2=16\Rightarrow k\in\left\{4;-4\right\}\)
Với k = 4 suy ra x =2; y=4/3; z=1
Với k =- 4 suy ra x =-2; y=-4/3; z=-1
Ta có :
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{4}\)
\(3y=4z\Leftrightarrow\frac{z}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Ta có :
\(\left(\frac{x}{6}\right)^2=\frac{x}{6}.\frac{x}{6}=\frac{x}{6}.\frac{y}{4}=\frac{y}{4}.\frac{z}{3}=\frac{z}{3}.\frac{y}{6}\)
\(\Leftrightarrow\)\(\left(\frac{x}{6}\right)^2\)\(=\frac{xy}{24}=\frac{yz}{12}=\frac{zx}{18}=\frac{xy+yz+zx}{24+12+18}=\frac{1}{9}\)\(\left(\text{T/c dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\pm\frac{1}{3}\)
\(Th1:\hept{\begin{cases}x=2\\y=\frac{4}{3}\\z=1\end{cases}}\)
\(Th2:\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\\z=-1\end{cases}}\)
toan 7 tim x,y,z biet (xy/2y+4x)=(yz/4z+6y)=(zx/6x+2z)=(x^2+y^2+z^2)/2^2+4^2+6^2
Cho các số dương x;y;z. CMR:
\(\dfrac{xy}{x^2+yz+zx}+\dfrac{yz}{y^2+zx+xy}+\dfrac{zx}{z^2+xy+yz}\le\dfrac{x^2+y^2+z^2}{xy+yz+zx}\)
Tìm số thực z,y,z thoả mãn
xy / 2y+4x = yz / 4z+6x = zx/ 6x+2z = x^2+y^2+z^2 / 2^2+4^2+6^2
chứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
làm nhanh giùm mình nha ! đang cần gấp <:)
Cho x;y;z >0 và xy+yz+zx = 1
Tìm Min S =\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-zx+2}+\frac{1}{4z^2-xy+2}\)
\(\dfrac{xyz-xy-yz-zx+x+y+z-1}{xyz+xy+yz-zx-x+y-z-1}\) với x = 5001;y=5002;z=5003
\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)