Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
My Nguyễn
Xem chi tiết
Ngọc Vĩ
17 tháng 7 2016 lúc 20:32

Đặt \(A=\sqrt{9+\sqrt{13}}+\sqrt{9-\sqrt{13}}\)

\(\Rightarrow A^2=9+\sqrt{13}+9-\sqrt{13}+2\sqrt{\left(9+\sqrt{13}\right)\left(9-\sqrt{13}\right)}\)

\(\Rightarrow A^2=18-2\sqrt{9^2-13}\)

\(\Rightarrow A^2=18-4\sqrt{17}\)

\(\Rightarrow A=\sqrt{18-4\sqrt{17}}\)

Hảo Đào thị mỹ
Xem chi tiết
Hồng Trinh
24 tháng 5 2016 lúc 21:58

\(\sqrt{13+\sqrt{30\sqrt{2+\sqrt{9+4\sqrt{2}}}}}=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}}\) \(=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}}=\sqrt{13+\sqrt{30\sqrt{2+2\sqrt{2}+1}}}\)\(=\sqrt{13+\sqrt{30\sqrt{\left(\sqrt{2}+1\right)^2}}}\)\(=\sqrt{13+\sqrt{30\left(\sqrt{2}+1\right)}}=\sqrt{13+\sqrt{30\sqrt{2}+30}}\)

Nhi Lê Nguyễn Bảo
Xem chi tiết
Không Tên
6 tháng 7 2018 lúc 21:12

\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)

\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\sqrt{5}+1\)

Không Tên
6 tháng 7 2018 lúc 21:09

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

Nguyễn Phúc Hoàng Long
Xem chi tiết
alibaba nguyễn
13 tháng 9 2018 lúc 9:27

\(\frac{9+4\sqrt{2}}{21}\)

Nguyễn Phúc Hoàng Long
5 tháng 12 2018 lúc 20:51

cho  P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\)  , Tìm GTLN của P  

Lê Ng Hải Anh
6 tháng 12 2018 lúc 21:22

ĐKXĐ: \(x\ge0\)

Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)

Để P lớn nhất thì: \(\frac{1}{\sqrt{x}+1}\)phải lớn nhất.Hay: \(\sqrt{x}+1\)nhỏ nhất

Theo ĐKXĐ,lại có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)

=>Min \(\sqrt{x}+1\)là 1 tại \(\sqrt{x}=0\Rightarrow x=0\)

=>Max P = \(1+\frac{1}{0+1}=2\)tại x=0

=.= hk tốt!!

Nguyễn Anh Vũ
Xem chi tiết
không tên
Xem chi tiết
alibaba nguyễn
10 tháng 10 2017 lúc 10:02

Ta có:

\(\frac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}\)

\(=\frac{\sqrt{n+4}-\sqrt{n}}{4\sqrt{n\left(n+4\right)}}=\frac{1}{4}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+4}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{1\sqrt{5}+5\sqrt{1}}+\frac{1}{5\sqrt{9}+9\sqrt{5}}+...+\frac{1}{2009\sqrt{2013}+2013\sqrt{2009}}\)

\(=\frac{1}{4}.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{9}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2013}}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{\sqrt{2013}}\right)\)

Hồ Quốc Khánh
Xem chi tiết
Smile
17 tháng 11 2015 lúc 19:28

\(=\frac{\left(\sqrt{13}+\sqrt{11}\right)^2+\left(\sqrt{13}-\sqrt{11}\right)^2}{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}\)

\(=\frac{13+2\sqrt{143}+11+13-2\sqrt{143}+11}{13-11}\)

\(=\frac{48}{2}=24\)

nguyễn anh thơ
Xem chi tiết
shitbo
15 tháng 10 2019 lúc 19:59

\(\sqrt{9x-9}+1=13\Leftrightarrow3\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

\(2.\text{bạn tự tìm đk}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(A=\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-2\right)=\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow x-2\sqrt{x}< 0\Leftrightarrow\left(\sqrt{x}-1\right)^2< 1\Leftrightarrow-1< \sqrt{x}-1< 1\)
\(\Leftrightarrow0< x< 4\)

Nguyễn Công Tỉnh
15 tháng 10 2019 lúc 20:05

Câu 1:

\(\sqrt{9x-9}+1=13\)\(ĐKXĐ:x\ge1\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)(tm ĐKXĐ)

Câu 2 

ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x-\sqrt{x}}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\sqrt{x}-2\right)\)

\(=\left(\frac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\frac{1}{x-2\sqrt{x}}\)

b Để A có giá trị âm \(\Rightarrow\frac{1}{x-2\sqrt{x}}< 0\)

vì 1>0

\(\Rightarrow x-2\sqrt{x}< 0\)

\(\Leftrightarrow0< \sqrt{x}< 2\)

\(\Leftrightarrow0< x< 4\)

kết hợp ĐKXĐ: \(\Rightarrow1< x< 4\)

shanyuan
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 12 2021 lúc 8:15

\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\\ b,x=13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\\ \Leftrightarrow A=\dfrac{-3}{2\sqrt{3}-1+3}=\dfrac{-3}{2\sqrt{3}+2}=\dfrac{-3\left(2\sqrt{3}-2\right)}{8}\)

\(c,A< -\dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\\ d,A=-\dfrac{2}{3}\Leftrightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{2}{3}\\ \Leftrightarrow2\sqrt{x}+6=9\\ \Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\\ e,\Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}=0\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x=0\left(tm\right)\\ f,\sqrt{x}+3\ge3\\ \Leftrightarrow A=-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{3}{3}=-1\\ A_{min}=-1\Leftrightarrow x=0\)