cmr
(a+b)^2 = (a-b)^2 + 4ab
(a -b )^2 =(a+ b )^2 +4ab
CMR : (a+b)2=(a-b)2+4ab
(a-b)2=(a+b)2-4ab
a)Ta có: (a+b)2=a2+2ab+b2=a2-2ab+4ab+b2=(a2-2ab+b2)+4ab=(a-b)2+4ab
=>(a+b)2=(a-b)2+4ab
b)Ta có: (a-b)2=a2-2ab+b2=a2+2ab-4ab+b2=(a2+2ab+b2)-4ab=(a+b)2-4ab
=>(a-b)2=(a+b)2-4ab
a) (a+b)^2=(a-b)^2 +4ab
=(a+b)^2=....................................
=(.........-2ab+...........) +4ab
=(a-b)^2 + ...............
b) (a-b)^2 = (a+b)^2 - 4ab
=(a-b)^2=....................................
=(...............................+b^2) -4ab
= ( a+b)^2 - 4ab
a) \(\left(a+b\right)^2=\left(a-b^2\right)+4ab\)
VP = \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
VT = \(\left(a+b\right)^2=a^2+2ab+b^2\)
=> VT = VP
b) \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)
Mình làm theo ý hiểu của mik thôi chứ đề bài bn viết khó hiểu lắm
1. CMR:
a)\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
b)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
a)VT=\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)VP=\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)(2)
từ (1) và (2)\(\Rightarrow\)VT=VP.Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
a) Ta có \(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)
\(\Rightarrow\)đpcm
b) Ta có \(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)
\(\Rightarrow\)đpcm
a, Ta có:
\(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)
=>đpcm
b, ta có:
\(Vp=\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)
=>đpcm
Bài 3 cmr
a/ (a+b)^2=(a-b)^2+4ab
b/ ,(a-b)^2=(a+b)^2-4ab
c/ a^3+b^3=(a+b)^3-3ab(a+b)
d/ a^3-b^3=(a-b)^3+3ab(a-b)
e/(a^2+b^2)(x^2+y^2)=(ax-by)^2+(ay+bx)^2
b)(a-b)^2
=a^2 -2ab+b^2
=a^2 +2ab+b^2 -4ab
=(a+b)^2 - 4ab
a)(a+b)^2
=a^2 +2ab+b^2
=a^2 -2ab+b^2 +4ab
=(a-b)^2 + 4ab
c)a^3+b^3
=(a^3+3a^2b+3ab^2+b^2)-(3a^2b+3ab^2)
=(a+b)^3-3ab(a+b)
d)a^3-b^3
=(a^3-3a^2b+3ab^2-b^3)+(3a^2b-3ab^2)
=(a-b)^3+3ab(a-b)
e)(a^2+b^2)(x^2+y^2)
=(a.x)^2+(b.x)^2+(a.y)^2+(b.y)^2
=((a.x)^2-2abxy+(b.y)^2)+((a.y)^2-2abxy+(b.x)^2)
=(ax-by)^2+(ay+bx)^2
l-ike giùm mik vs công sức cả buổi đấy
Cmr(a+b)^2-(a-b)^2=4ab
Ta có:
\(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a^2+b^2+2ab\right)-\left(a^2-b^2-2ab\right)\)
\(=a^2+b^2+2ab-a^2-b^2+2ab\)
\(=4ab\)
Vậy...
CMR: (a+b)2-(a-b)2=4ab
Ta có:
Vế trái:(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)
=a2+2ab+b2-a2+2ab-b2
4ab(=VP)
Vậy(a+b)2-(a-b)2=4ab
(a+b)2-(a-b)2=4ab
ta có VT:
(a+b)2-(a-b)2=a2+2ab+b2-(a2-2ab+b2)
=a2+2ab+b2-a2+2ab-b2
=(a2-a2)+(2ab+2ab)+(b2-b2)
=4ab(dpcm)
Ta có:
\(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=\left(a^2-a^2\right)+\left(2ab+2ab\right)+\left(b^2-b^2\right)\)
\(=4ab\)
Vậy \(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
CMR:
a)(a+b)^2-(a-b)^2=4ab
b)(a+b)^3+(a+b)^3=2a.(a^2+3b^2)
CMR :
( a + b)^2 =(a-b)^2+4ab
( a-b)^2=(a+b)^2-4ab
áp dụng tính
a) ( a-b)^2 boeets a + b = 7 và a.b=12
b ) ( a+b)^2 biết a-b=20 và a.b=23
làm nhanh giúp mk nhé
mk đang râấấấấấấấấất cần gấấấấấấp
(a+b)2=(a-b)2+4ab
(a+b)2=a2-2ab+b2+4ab
a2+b2+2ab
=(a+b)2
==> (a+b)2=(a-b)2+4ab
(a-b)2=(a+b)2-4ab
a+2ab+b2-4ab
a+b2-2ab
=(a-b)2
==> (a-b)2=(a+b)2-4ab
Áp dụng:
a) (a-b)2=72-4.12
(a-b)2=49-48=1
b) (a+b)2=122+4.23
(a+b)2=144+92=236
Xong!!! Đánh mỏi tay v :V
(a+b)^2 = (a-b)^2 + 4ab
(a-b)^2 = (a+b)^2 - 4ab
Giúp mình tìm vế phải
(a+b)^2 = a^2+2ab+b^2
(a-b)^2 = a^2-2ab+b^2
HT
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Khai triễn vế phải:
\(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Khai triễng vế phải:
\(\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\)
\(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)