mik cần rất gấp, giúp mik nha
Cho tam giác ABC cân tại A Gọi M là trung điểm của BC Chứng minh tam giác ABM bằng tam giác acm chứng minh AM vuông góc với BC ba cho AB = 5 cm BC = 8 cm Tính am
Cho tam giác ABC có AB = AC , M là trung điểm của BC.
a ) Chứng minh : Tam giác ABM bằng tam giác ACM .
b) Chứng minh : AM là tia phân giác của góc BAC.
c ) Chứng minh : AM vuông góc với BC tại M. giúp mik vs
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
cho tam giác abc cân tại a kẻ am vuông góc bc ( m thuộc bc ) .a)biết ab = 5 cm ; am =4cm tính mb b) chứng minh tam giác abm = tam giác acm c) kẻ mi vuông góc ab( I thuộc ab ); mk vuông góc ac ( k thuộc ac ) chứng minh mi = mk d) chứng minh am vuông góc Ik ( mng giúp mik vs ạ tks nhiều , giải theo cách cấp 2 thôi nha mng lớp 7 ý ) :)))
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
BM=CM(M là trung điểm của BC)
\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)
Suy ra: ME=MF(hai cạnh tương ứng)
Xét ΔEMF có ME=MF(cmt)
nên ΔEMF cân tại M(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A . Vẽ CH vuông góc AB ( H thuộc AB ).Gọi M là trung điểm của BC, gọi O là giao điểm của AM với CH.
a)Biết AB=AC=10 cm, AH= 6 cm. Tính độ dài cạnh CH
b)Chứng minh tam giác ABM = tam giác ACM và góc BAM = góc CAM
c)Chứng minh tam giác OBC cân
d)OB vuông góc với AC (K là giao điểm của OB và BC)
Cho tam giác ABC có AB=AC.Điểm M là trung điểm của BC
a,Chứng minh tam giác ABM bằng tam giác ACM
b,Chứng minh AM vuông góc với BC
c,Chứng minh AM là tia phân giác của góc bAc
Bài 17: Cho tam giác ABC cân tại A. Gọi M là trung điểm BC.
a, Chứng minh \(\Delta\) ABM =\(\Delta\) ACM
b, Chứng minh AM là phân giác góc BAC và AM vuông góc BC.
c, Lấy E bất kì trên đoạn AM. Chứng minh tam giác EBC cân.
Lời giải:
a.
Do tam giác $ABC$ cân tại $A$ nên $AB=AC$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$AM$ chung
$BM=CM$ (do $M$ là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$
Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$
Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$
$\Rightarrow \widehat{AMB}=180^0:2=90^0$
$\Rightarrow AM\perp BC$
c.
$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$
$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)
$\Rightarrow EB=EC$
$\Rightarrow \triangle EBC$ cân tại $E$.
Cho tam giác ABC cân tại A, Bx vuông góc BC,Cy vuông góc AC, M là giao điểm của Bx và By
a) tam giác ABM bằng tam giác ACM
b) chứng minh: AM vuông góc BC
c) kẻ BN vuông góc AC( N thuộc AC) gọi I là giao điểm BN với AM. Chứng minh tam giác BIM cân
d) chứng minh CI vuông góc AB
: Ch o tam giác ABC có AB=AC ,gọi AM là tia phân giác của góc BAC.
a) Chứng minh 2 tam giác ABM&ACM bằng nhau
b) AM là phân giác góc A
c) Chứng minh AM vuông góc với BC
d) Chứng minh M là trung điểm của BC.
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABM=ΔACM
=>góc AMB=góc AMC=180/2=90 độ
=>AM vuông góc BC
d: ΔABM=ΔACM
=>BM=CM
=>Mlà trung điểm của BC