Tìm số nguyên x biết :
a) (x - 2)4 = (x - 2)5
b) x3 -9x = 0
Tìm x biết:
a) 5x(x – 2) + 3x – 6 = 0
b) x 3 – 9 x = 0
a) (x – 2)(x2 + 2x + 4) – x( x2 +2) = 12 b) (x – 3)2 – (x+2)(x–2) = 16
c) x3 – 9x = 0 d) x3 – 6x2 + 9x – 54 = 0
giúp e vs ạ
\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
bài 1)tìm số nguyên x dể giá trị của các biểu thức là số nguyên
a)A=2x^2-5x+3/2x-5
b)B=3x^3+9x^2-x-5/x+3
bài 2 )tính giá trị biểu thữc
a)C=5a-b/3a+7 + 3b-2a/2b-7 biết 2a-b=7 a khác 7/-3 và b khác 7/2
b)D=8a+5b/5a-1 + 3a+b/4b+1 biết 3a+5b=-1 a khác 1/5 và b khác -1/4
tìm x là số nguyên biết :
a) ( x-2).9x+1) = 0
b) ( x^2+7).(x^2+49)<0
c) (x^2-7).(x^2- 49) < 0
Bài 5. Tìm x, biết:
a) x (2x - 7) + 4x -14 = 0
b) x3 - 9x = 0
c) 4x2 -1 - 2(2x -1)2 = 0
d) (x3 - x2 ) - 4x2 + 8x - 4 = 0
\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0 d) x2.(x+1)-x.(x+1)+x.(x-1)=0
b) 9.(2x+1)2-4.(x+1)2=0 e) (x-2)2-(x-2).(x+2)=0
c) x3-6x2+9x=0 g) x4-2x2+1=0
h) 4x2+y2-20x-2y+26=0 i) x2-2x+5+y2-4y=0
tìm x nguyên dương biết : x^4-9x^2+20=0
Pt\(\Leftrightarrow\left(x^4-4x^2\right)-\left(5x^2-20\right)=0\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2;x=-2\\x=\sqrt{5};x=-\sqrt{5}\end{cases}}}\)
Vì x nguyên dương nên \(\Rightarrow\orbr{\begin{cases}x=2\\x=\sqrt{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\x=\sqrt{5}\end{cases}}\)
Bài 2: Tìm số nguyên x biết: (2 điểm)a) 4 . (x-2)- 2(x+3) = –28 b) 3x + 7 – 9x = –11
a) Ta có: \(4\left(x-2\right)-2\left(x+3\right)=-28\)
\(\Leftrightarrow4x-8-2x-6+28=0\)
\(\Leftrightarrow2x+14=0\)
\(\Leftrightarrow2x=-14\)
hay x=-7
Vậy: x=-7
b) Ta có: \(3x+7-9x=-11\)
\(\Leftrightarrow-6x+7+11=0\)
\(\Leftrightarrow-6x+18=0\)
\(\Leftrightarrow-6x=-18\)
hay x=3
Vậy: x=3