Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2023 lúc 11:17

Kẻ OH vuông góc CD

=>H là trung điểm của CD

Xét hình thang EFDC có

H là trung điểm của CD

HO//CE//DF

=>O là trung điểm của EF

=>AE=FB

CH=DH=7cm

=>OH=24cm
=>CE+DF=48cm

S CEFD=1/2*48*14=7*48=336cm2

Nguyễn Đức An
Xem chi tiết
Phương Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2023 lúc 11:16

loading...

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 6 2017 lúc 15:58

Đường kính và dây của đường tròn

Poon Phạm
Xem chi tiết
Thông
18 tháng 9 2016 lúc 16:51

Cần giải thì liên lạc face 0915694092 nhá

thảo
7 tháng 12 2017 lúc 21:06

giúp tôi trả lời tất cả câu hỏi đề này cái

Thanh Trang
Xem chi tiết
Đặng Minh Hiếu
20 tháng 4 2016 lúc 8:29

 bạn gì đó giúp mình giải bài toán này vs

Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Tất Đạt
22 tháng 9 2019 lúc 14:00

A B O M C D E F H G

1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.

Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))

Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM

Vậy thì tứ giác ACEM là hình thang cân (đpcm).

2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB

Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).

3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)

Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG

Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM

Theo mối quan hệ giữa đường kính và dây ta có: 

\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)

Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2019 lúc 3:33

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AE, BF là các tiếp tuyến của nửa đường tròn nên

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kan Zandai Nalaza
Xem chi tiết