Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn bảo my
Xem chi tiết
Trần baka
12 tháng 3 2019 lúc 23:43

Lấy A - B ta được

\(A-B=\frac{-2016}{10^{2016}}-\frac{-2017}{10^{2016}}+\frac{-2017}{10^{2017}}+\frac{2016}{10^{2017}}\)

              \(=\frac{1}{10^{2016}}-\frac{1}{10^{2017}}>0\)

Nên A > B

Nghi Ngo
Xem chi tiết
alibaba nguyễn
24 tháng 4 2017 lúc 18:33

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

alibaba nguyễn
24 tháng 4 2017 lúc 18:37

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

Nghi Ngo
24 tháng 4 2017 lúc 19:08

cảm ơn bạn

NOO PHƯỚC THỊNH
Xem chi tiết
Trịnh Lê Na
17 tháng 4 2017 lúc 21:39

Dài thế bạn

NOO PHƯỚC THỊNH
18 tháng 4 2017 lúc 7:27

bạn trả lời được 1 bài cũng đc

Phạm Hồ Hữu Trí
Xem chi tiết
Third Lapat Ngamchaweng
Xem chi tiết
Nguyễn Đoàn Xuân Thu
Xem chi tiết
Bùi Vân Giang
Xem chi tiết
Diệu Anh
18 tháng 2 2020 lúc 19:44

Quy đồng: \(\frac{n}{n+1}\)\(\frac{n\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}\)=\(\frac{n^2.2n}{\left(n+1\right)\left(n+2\right)}\)

\(\frac{n+1}{n+2}\)\(\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+2\right)}\)\(\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)

Vì n2+2n+1 < n2.2n+1 nên...

Vậy...

Ko chắc nha

Nghe nó ko có lý kiểu j j ý 

Khách vãng lai đã xóa
rororonoazoro
Xem chi tiết

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

Khuyễn Miên
Xem chi tiết
Vũ Minh Tuấn
7 tháng 1 2020 lúc 21:46

2. Câu này có lần mình trả lời rồi, đây nhé.

Ta có:

Khách vãng lai đã xóa