số x thỏa mãn 3x+1=9x. số x=...
Cho số thực x thỏa mãn điều kiện 9 x + 9 - x = 23 . Tính giá trị của biểu thức P = 5 + 3 x + 3 - x 1 - 3 x - 3 - x
A. - 5 2
B. 1 2
C. 3 2
D. 2
Ta có 3 x + 3 - x 2 = 9 x + 9 - x + 2 = 23 + 2 = 25
Suy ra 3 x + 3 - x = 5
Do đó P = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = 5 + 5 1 - 5 = - 5 2
Đáp án A
Tìm các số nguyên x,y thỏa mãn \(\sqrt{9x^2+16x+96}+16y=3x-24\)
\(\Leftrightarrow\sqrt{9x^2+16x+96}=3x-16y-24\)
Vế phải nguyên \(\Rightarrow\) vế trái nguyên
\(\Rightarrow9x^2+16x+96=k^2\)
\(\Rightarrow81x^2+144x+864=\left(3k\right)^2\)
\(\Leftrightarrow\left(9x+8\right)^2+800=\left(3k\right)^2\)
\(\Leftrightarrow\left(3k-9x-8\right)\left(3k+9x+8\right)=800\)
Pt ước số thật kinh dị với số ước của 800
Ta có \(9x^2+16x+96=\left(3x-24-16y\right)^2\)
\(\Leftrightarrow9x^2+16x+96=9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2\)\(\Leftrightarrow16x+96=\left(16y+24\right)\left(16y+24-6x\right)\)
\(\Leftrightarrow8\left(2x+12\right)=4\left(4y+6\right).2\left(8y+12-3x\right)\)
\(\Leftrightarrow2x+12=\left(4y+6\right)\left(8y+12-3x\right)\)\(\Leftrightarrow2x+12=32y^2+48y-12xy+48y+72-18x\)
\(\Leftrightarrow32y^2+96y-12xy-20x+60=0\)\(\Leftrightarrow32y^2+96y+60=12xy+20x\)\(\Leftrightarrow8y^2+24y+15=3xy+5x\)
\(\Leftrightarrow8y^2+24y+15=x\left(3y+5\right)\)\(\Leftrightarrow x=\dfrac{8y^2+24y+15}{3y+5}\)
\(\Leftrightarrow9x=\dfrac{9\left(8y^2+24y+15\right)}{3y+5}=\dfrac{72y^2+216y+135}{3y+5}\)\(=\dfrac{\left(72y^2+120y\right)+\left(96y+160\right)-25}{3y+5}\)\(=24y+32-\dfrac{25}{3y+5}\)
\(\Leftrightarrow24y+32-\dfrac{25}{3y+5}\in Z\)\(\Rightarrow3y+5\in U\left(25\right)=\left\{\pm1,\pm5,\pm25\right\}\)\(\Leftrightarrow3y\in\left\{-4,-6,-10,0,-30,20\right\}\)\(\Rightarrow y\in\left\{-2,-10,0\right\}\)
+) Với y=-2=> x=1
+) với y=-10=> x=-23
Vậy pt cho 2 cặp (x,y) nguyên =(1,-2),(-23,-10)
tập hợp các số nguyên x thỏa mãn 3x2+9x=0
3X2 + 9x = 0
3x ( X + 3 )= 0
3x =0 hoặc x + 3 =0
x = 0 hoặc x = -3
tìm số tự nhiên x thỏa mãn:(9x +17) chia hết (3x +2).
9x+17 = = 3(3x+2) +11 chia hết cho 3x+2
=> 11 chia hết cho 3x+2
=> x là số N
=> 3x+2 =11 => 3x =9
=> x =3
9x + 17 chia hết cho 3x + 2
=> 9x + 6 + 11 chia hết cho 3x + 2
Vì 9x + 6 chia hết cho 3x + 2
=> 11 chia hết cho 3x + 2
=> 3x + 2 thuộc Ư(11)
3x+2 | x |
1 | KTM |
11 | 3 |
KL: x = 3
Tập hợp các số nguyên x thỏa mãn 3x2 + 9x =0
Tập hợp các số nguyên x thỏa mãn : 3x2 + 9x=0 là ?
Tập hợp các số nguyên x thỏa mãn 3x^2+9x=0 là.Bày cách làm nha
\(3x^2+9x=0\Leftrightarrow3x\left(x+3\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }x+3=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=-3\)
Vậy tập hợp cần tìm là \(\left\{-3;0\right\}\)
n là số tự nhiên thỏa mãn phương trình 3 x − 3 − x = 2 cos n x có 2018 nghiệm. Tìm số nghiệm của phương trình: 9 x + 9 − x = 4 + 2 c os 2 n x
A. 4036
B. 4035
C. 2019
D. 2018
Đáp án A
Ta có 9 x + 9 − x − 2 = 2 1 + c os2nx ⇔ 3 x − 3 − x 2 = 4 c os 2 n x ⇔ 3 x − 3 − x = 2 cos n x a 3 x − 3 − x = − 2 cos n x b
Nhận xét x1 là nghiệm của P T a ⇒ − x 1 là nghiệm PT(b)
Giả sử 2PT a ; b có chung nghiệm x0 khi đó 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = 2 cos n x 0
⇔ 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = − 2 cos n x 0 ⇒ 3 x 0 = 3 − x 0 ⇒ x 0 = 0 thay vào PT a 3 0 − 3 0 = − 2 c os 0 ⇒ 0 = 1 vô lý
PT (a); (b) không có nghiệm chung. PT có 2.2018 = 4036 nghiệm.
Tìm số tự nhiên x thỏa mãn : (9x+17) chia hết cho( 3x +2)
9x+17 = 3(3x+2) +11 chia hết cho 3x+2 khi 11 chia hết cho 3x+2
Vậy 3x+2 là Ư(11) ={ 1;11}
3x+2 = 1 => loại
3x+2 = 11 => 3x =9 => x =3
Vậy x =3
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0