Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Anh
Xem chi tiết
Siuuuu
Xem chi tiết
Siuuuu
22 tháng 10 2023 lúc 10:29

Giúp em với ạ

Thu Đào
Xem chi tiết
Võ Ngọc Phương
20 tháng 9 2023 lúc 20:13

a) \(2^5+5.13-3.2^3\)

\(=32+5.13-3.8\)

\(=32+65-24\)

\(=97-24\)

\(=73\)

b) \(5^{13}:5^{10}-5^2.2^2\)

\(=5^3-25.4\)

\(=125-100\)

\(=25\)

c) \(4^5:4^3-3^9:3^7+5^0\)

\(=4^2-3^2+1\)

\(=16-9+1\)

\(=7+1\)

\(=8\)

Nguyen Minh Anh
Xem chi tiết
Alayna
Xem chi tiết
Nguyễn Huy Tú
24 tháng 10 2016 lúc 19:02

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

NaNh Soái Ca^s
4 tháng 11 2019 lúc 21:44

Có phải ở sách NCPT ko bn

Khách vãng lai đã xóa
soyeon_Tiểubàng giải
24 tháng 10 2016 lúc 20:09

Bài 2: Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3B=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6B-2B=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4B=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4B=3-\frac{203}{3^{100}}< 3\)

\(B< \frac{3}{4}\left(đpcm\right)\)

SHINAGAWA AYUKI
Xem chi tiết
ducanh
16 tháng 10 2018 lúc 21:05

a,51781,53086

b,-11776/2

c,22/35

Đặng Hoàng Dương
Xem chi tiết
Nguyễn Lê Bách Thảo
27 tháng 2 2016 lúc 14:43
Bảo toàn gì le nhe
San San
Xem chi tiết
Dân Nguyễn
Xem chi tiết
Dân Nguyễn
7 tháng 10 2017 lúc 20:00

làm nhanh giúp mik vs

thám tử
7 tháng 10 2017 lúc 22:12

b. \(\left(\dfrac{3^2}{9}.\dfrac{3^3}{81}\right)^{12}:\left(\dfrac{3^6}{81^2}\right)^{10}\)

\(=\left(1.\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left[\left(\dfrac{1}{3}\right)^2\right]^6:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{9}\right)^6:\left(\dfrac{1}{9}\right)^{10}\)

\(=\left(\dfrac{1}{9}\right)^{-4}=6561\)