Tìm ƯCLN ( 3n+5 ; 5n+8 ) với x thuộc N
Tìm ƯCLN của 3n+5 và 3n+7
Giúp tớ với
Gọi ƯCLN (3n+5;3n+7) = d (d thuộc Z )
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\left(3n+7\right)-\left(3n+5\right)⋮d\Rightarrow3n+7-3n-5⋮d\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Vì d lớn nhất => d=2
Vậy ƯCLN (3n+5;3n+7) = 2
tìm ƯCLN của 2n+1 và 3n+5
Gọi \(ƯCLN\left(2n+1,3n+5\right)=d.\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+10⋮d\end{cases}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+3\right)⋮d\Rightarrow7⋮d\Rightarrow d\in\left\{-7;-1;1;7\right\}\)
vậy \(d\in\left\{-7;-1;4;7\right\}\)
gọi d \(\in\) ƯC(2n+1;3n+5), d\(\in\)N*
=> 2n+1\(⋮\) d và 3n+5 \(⋮\)d
=>3(2n+1)\(⋮\)d và 2(3n+5)\(⋮\)d.
=>6n+3 \(⋮\)d và 6n+10 \(⋮\)d
=> (6n+10)-(6n+3)\(⋮\)d.
=>7 \(⋮\)d
=> d \(\in\)Ư(7)={1;7}
- xét: 2n+1 \(⋮\)7
=>2n+1+7\(⋮\)7 (vì 7\(⋮\)7)
=>2n+8 \(⋮\)7
=>2(n+4)\(⋮\)7
=>n+4 \(⋮\)7 ( vì (2;7)=1)
=>n+4=7k ( k\(\in\)N*)
=>n=7k-4.
khi đó: 3n+5=3.(7k-4)+5 = 21k-12+5 = 21k-7 \(⋮\) 7
vậy ƯCLN của (2n+1 và 3n+5) = 7 khi n=7k-4( k\(\in\)N*)
và ƯCLN của (2n+1 và 3n+5) = 1 khi n khác 7k-4( k\(\in\)N*)
chúc bạn năm mới vui vẻ, k nha. đúng 100% luôn.
Tìm ƯCLN(3n+2;4n+5)n thuộc N
Bài1: tìm a,b a-b=48 và ƯCLN ( a ,b) = 20 Bài 2 A)Chứng minh 5n+5 và 3n+1 là 2 sốc nguyên tố cùng nhau B) tìm ƯCLN ( 2n-1;9n+4)
Bài 1:
Vì ƯCLN $(a,b)=20$ nên $a\vdots 20; b\vdots 20$
$\Rightarrow a-b\vdots 20$ hay $48\vdots 20$ (vô lý)
Do đó không tồn tại $a,b$ thỏa mãn điều kiện đề bài.
Bài 2:
a) Đề sai. Bạn cho $n=3$ thì $5n+5=20, 3n+1=10$. Hai số này có ƯCLN là $10$ nên không nguyên tố cùng nhau.
b) Gọi ƯCLN của $2n-1$ và $9n+4$ là $d$. Khi đó:
\(\left\{\begin{matrix} 2n-1\vdots d\\ 9n+4\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 18n-9\vdots d\\ 18n+8\vdots d\end{matrix}\right.\)
\(\Rightarrow (18n+8)-(18n-9)\vdots d\) hay $17\vdots d$
$\Rightarrow d=1$ hoặc $17$
Bài 1:
a) Tìm ƯCLN (76 ; 1995)
b) Tìm ƯCLN (2n + 1 ; 3n + 1)
\(a,76=2^2\cdot19\\ 1995=3\cdot5\cdot7\cdot19\\ \RightarrowƯCLN\left(76,1995\right)=19\)
\(b,\) Gọi \(d=ƯCLN\left(2n+1,3n+1\right)\)
\(\Rightarrow2n+1⋮d;3n+1⋮d\\ \Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+1,3n+1\right)=1\)
1.Tìm ƯCLN(2n+2;2n)?
2.Tìm ƯCLN(3n+2;2n+1)?
1,
\(\frac{2n+2}{2n}\)= \(\frac{2(n+1)}{2n}\)=\(\frac{n+1}{n}\)
=> \(\frac{2n+2}{n+1}\)= 2
=> ƯCLN(2n+2: 2n) = 2
a. Tìm ƯCLN 2 n + 2 ; 2 n ; n ∈ N * .
b. Tìm ƯCLN 3 n + 2 ; 2 n + 1 với n ∈ N .
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
Cho 3n+1 và 5n+4 (n thuộc N). Tìm ƯCLN (3n+1;5n+4)
Đặt d=ƯCLN(3n+1;5n+4)
=> (3n+1) chia hết cho d; (5n+4) chia hết cho d
=> (5n+4)-(3n+1) chia hết cho d
=> 3(5n+4)-5(3n+1) chia hết cho d
=>(15n+12)-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1;7}
=> d=7
Vậy WCLN(3n+1;5n+1)=7
Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu
có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn