Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Hoàng Phúc
Xem chi tiết
Ngu Ngu Ngu
21 tháng 4 2017 lúc 21:18

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)

Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:

\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\)  \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)

\(\Rightarrow b⋮d\). Lại có:

\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)

Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)

Lê Thị Thu Phương
Xem chi tiết
Trần Nguyễn Gia Linh
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
le quang vi
Xem chi tiết
Van Vu
28 tháng 8 2016 lúc 17:25

dsads

Lê Nguyễn Hoàng Lâm
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2020 lúc 19:13

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
Trần Bảo Nam
Xem chi tiết
Phạm Lê Quỳnh Nga
Xem chi tiết