Chứng minh A= ( 1/1.2 + 1/3.4 + ... + 1/2007.2008 + 1/2009.2010 ) / ( 1/1006.2010 + 1/1007.2009 + ... + 1/2009.1007 + 1/2010.1006 ) thuộc Z
Cho :
A= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{2007.2008}+\dfrac{1}{2009}\)
B = \(\dfrac{1}{1005.2009}+\dfrac{1}{2006.2008}+...+\dfrac{1}{2009.1005}\)
Chứng minh : A = 1507 . B
Đặt A=1/1.2+1/3.4+...+1/2005.2006,B=1/1004.2006+1/1005.2006+...+1/2006.1004 Chứng minh rằng A/B thuộc Z
1/1.2+1/2.3+1/3.4+...+1/2009.2010
= 1 - 1/2 . 1/2 -1/3 . 1/3 - 1/4 ... 1/2009 - 1/2010
= 1 - 1/ 2010
=1/2010
1/1.2+1/2.3+1/3.4+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
=(1-1/2)+(1/2-1/3)+...+(1/9-1/10)
=1-1/10
=9/10
1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/2006.2007+1/2007.2008
giúp mình với
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=2-\frac{1}{2018}\)
\(=\frac{1009}{2018}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\)TỰ RÚT GỌN NHA
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=2-\frac{2007}{2008}\)
\(=\frac{2009}{2008}\)
~Học tốt~
Xin lỗi, tớ viết sai đề
Làm tiếp khúc sai:
\(=2-\frac{1}{2008}\)
\(=\frac{4016}{2008}-\frac{1}{2008}\)
\(=\frac{4015}{2008}\)
~Học tốt~
Tính 1/1.2+1/2.3+1/3.4+1/4.5+...+1/2009.2010
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2010}{2010}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
tính
I = 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2009.2010
\(I=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2009.2010}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+.....+\left(\frac{1}{2009}-\frac{1}{2009}\right)-\frac{1}{2010}\)
\(I=1-0-0-...-0-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)
I = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2009 - 1/2010
I = 1 - 1/2010
I = 2009/2010
Vậy I = 2009/2010
a/\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
1/1.2+1/2.3+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I=1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I=1-1/2010
I=2009/2010
Vậy I=2009/2010
I = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I = 1-1/2010
I = 2009/2010
Chúc bạn học tốt nha
ta thấy: 1/1 - 1/2 = 1/2 = 1/1.2
1/2 - 1/3 = 1/6 = 1/2.3
1/3 - 1/4 = 1/12 = 1/3.4
tớ nêu cách làm rùi đó
Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}\)
\(I=\frac{2009}{2010}\)