Cho :
A = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{2007.2008}+\dfrac{1}{2009}\)
B = \(\dfrac{1}{1005.2009}+\dfrac{1}{1006.2008}+....+\dfrac{1}{2009.1005}\)
CM : A = 1507.B
Bài 1: Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
a) Chứng minh: A=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
b) Chứng minh: A<\(\dfrac{5}{6}\)
Chứng minh :
\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+..+\dfrac{1}{59.60}\)
Bài 1: Cho M= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)+...+\(\dfrac{1}{50}\)
Chứng minh M = \(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)
MÌNH CẢM ƠN ĐÃ GIÚP CHO MÌNH~
1. Tính:
a.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
b.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
2. Tìm x , biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
bài này ko được coppy trên mạng
Cho :
A = \(\dfrac{1}{2.17}+\dfrac{1}{3.18}+\dfrac{1}{4.19}+...+\dfrac{1}{1990.2005}\)
B = \(\dfrac{1}{2.1991}+\dfrac{1}{3.1992}+\dfrac{1}{4.1993}+...+\dfrac{1}{16.2005}\)
Chứng minh : \(\dfrac{A}{B}=\dfrac{663}{5}\)
BT2: Tìm x, biết
1) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Bài 1:
a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\)
Chứng tỏ: A <\(\dfrac{1}{2}\)
b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{20}}\)
Chứng tỏ B < 1
c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng tỏ C < \(\dfrac{1}{2}\)
d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)
Chứng tỏ D < 1
Bài 1: Cho b \(\in\) N, b > 1
Chứng minh: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
Bài 2: Cho S = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{9^2}\)
Chứng minh: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
-Giúp tớ với, bí quá :<