Tính \(\dfrac{A}{B}\) biết:
\(A=\dfrac{1}{2.17}+\dfrac{1}{3.18}+\dfrac{1}{4.19}+...+\dfrac{1}{1900.2005}\) \(\&\) \(B=\dfrac{1}{2.1991}+\dfrac{1}{3.1992}+\dfrac{1}{4.1993}+...+\dfrac{1}{16.2005}\)
Làm giúp mk zới thứ 6 thi zùi
Bài 1: Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
a) Chứng minh: A=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
b) Chứng minh: A<\(\dfrac{5}{6}\)
Bài 1:
a, Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\)
Chứng tỏ: A <\(\dfrac{1}{2}\)
b, Cho B = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{20}}\)
Chứng tỏ B < 1
c, Cho C = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
Chứng tỏ C < \(\dfrac{1}{2}\)
d, Cho D = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\)
Chứng tỏ D < 1
Cho :
A= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{2007.2008}+\dfrac{1}{2009}\)
B = \(\dfrac{1}{1005.2009}+\dfrac{1}{2006.2008}+...+\dfrac{1}{2009.1005}\)
Chứng minh : A = 1507 . B
Cho A\(=\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}\)
B\(=\dfrac{1,2:\left(1\dfrac{1}{5}\cdot1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Chứng tỏ A=B
Bài 1: Cho b \(\in\) N, b > 1
Chứng minh: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
Bài 2: Cho S = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{9^2}\)
Chứng minh: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
-Giúp tớ với, bí quá :<
a) Tìm số nguyên a sao cho A=\(\dfrac{a^3+3a^2+2a-3}{a+1}\) có giá trị nguyên
b) Cho B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{8}{9}>B>\dfrac{2}{5}\)
1)
Cho \(\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{200}\)
Chứng minh: \(A>\dfrac{9}{10}\)
2)
Cho \(B=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Chứng minh: \(B>\dfrac{7}{12}\)
HELP ME!!!!!!!!
Cho : A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}\). Chứng minh : A \(\notin\) N